
Performance Benchmark of the SGI TP9400
RAID Storage Array

William Julien
Engineering Operating Systems

Boeing Shared Services
P.O. Box 3307 MS 7j-04

Seattle, WA 98124-2207 USA
julien@sdc.cs.boeing.com

425-865-5511

Copyright © The Boeing Company

Abstract:
This paper will discuss our experience with the
performance of SGI’s TP9400 RAID Storage Array.
Using the standard SGI diskperf performance testing
utility and a locally written benchmark, we will
demonstrate what actual performance improvements that
can be expected over locally connected XFS scsi
filesystems. We benchmarked the TP9400 using a shared
connection via a Brocade switch between a desk-side
Origin 2000 and an Onyx system. This paper will present
our findings of the thoughput for each SGI system using
dedicated partitions and a CXFS shared filesystem.

Methodology

There are many ways to configure a filesystem. We learned, the hard way, that a configuration that
works well on one platform or application, does not necessarily provide the same performance in all
situations. This paper is an account of our experiences as we transition from an Origin 2000 with scsi
attached storage, to a fiber channel attached TP9400 storage array and a new 64 processor Origin
3800.

To test our configuration, we used the standard SGI benchmark, diskperf(1) and a locally written tool.
The diskperf utility does a very complete test of various types of I/O and it is provided in the standard
IRIX distribution. As a cross check, our locally written tool called diskrate, benchmarks very simple
sequential forward write and reads.

Diskrate Methodology

fd = open(streamName, "w");
for (block = 0; block < Nblocks; block++) {
 n = write(fd, Buffer, BlockSize);
}

Sample Output

diskrate ## blocksize=262144 filesize=3000
BlockSize = 262144, 11444 Blocks --> 2999.976 MB
1 passes writing 1 times then reading 5 times
1 files, with cache flushed before reading.
/big/i/perf/ppwmj1/testfile_5812534
Writing for 240.66 sec @ rate of 12.465619 MB/sec with cpu of 35.17/0.05 sec
Reading for 98.91 sec @ rate of 30.330360 MB/sec with cpu of 23.75/0.05 sec
Reading for 71.74 sec @ rate of 41.817340 MB/sec with cpu of 21.65/0.04 sec
Reading for 74.95 sec @ rate of 40.026363 MB/sec with cpu of 21.93/0.04 sec
Reading for 78.94 sec @ rate of 38.003242 MB/sec with cpu of 22.86/0.04 sec
Reading for 79.20 sec @ rate of 37.878484 MB/sec with cpu of 23.83/0.05 sec
Unlink for 1.48 sec with cpu of 1.21/0.00 sec

diskperf -D -W -c 10m fred
#---
Disk Performance Test Results Generated By Diskperf V1.2
#
Test name : Unspecified
Test date : Tue Apr 10 08:08:57 2001
Test machine : IRIX64 origin 6.5 07201611 IP27
Test type : XFS data subvolume
Test path : fred
Request sizes : min=16384 max=4194304
Parameters : direct=1 time=10 scale=1.000 delay=0.000
XFS file size : 12582912 bytes
#---
req_size fwd_wt fwd_rd bwd_wt bwd_rd rnd_wt rnd_rd
(bytes) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s)
#---
 16384 0.93 8.52 0.81 1.94 0.74 1.80
 32768 1.39 11.62 1.20 3.13 1.11 3.18
 65536 2.55 14.24 2.21 4.59 2.14 5.01
 131072 4.46 15.45 3.97 7.56 3.68 7.71
 262144 8.40 18.28 8.59 12.29 8.23 12.48
 524288 15.82 23.21 12.24 18.25 11.44 19.38
 1048576 17.92 30.75 16.25 27.17 15.78 26.24
 2097152 23.28 34.29 19.06 32.67 21.85 31.80
 4194304 27.79 37.06 25.44 36.04 26.83 34.84

Our Humble Origin

Before I begin describing our performance experience with the TP9400 RAID storage array, we need
to look, for comparison, at our humble Origin. Tuning our SGI I/O performance has been a journey,
with with many lessions learned along the way. And this journey began with the analysis of our
modest 8 CPU Origin 2000.

The application mix on the Origin 2000 is primarily CPU bound MPI finite analysis codes. These
programs, when they did perform any I/O, were predominatly write only. For this reason,
performance of the I/O sub-system was not a primary concern and not part of the acceptance criteria
for production. However, when we did benchmark the performance, it was alarming and in need of
some serious attention.

The Home and scratch filesystems were configured on a scsi attached clairian RAID storage device as
an xlv. Initially, they were setup with a stripe across two sub-partitioned LUNS. Each of the LUNS
were built as an raid3 8+1. This configuration is simular to how the filesystems on another, non sgi
system, were built. Previous experience had shown this provided acceptable performance.

After the system was put into production, a benchmark was performed. It showed we had amazingly
poor I/O performance! This gave us two a very important lessons. First, we learned that one should
always benchmark the performance of your I/O sub-systems. Prior experience was of little benifit.
Second, we learned it is best not to sub-partition your LUNS. We found a serious performance
degradation if you use these sub-partitions in a stripe. Each write had to be syncronised across all 16
spindles on the two raid3 8+1 arrays.

A "before and after" diskperf benchmark demonstrates this degradation. The following graph shows
that at a 1meg request block size, we were getting 5 MB/second on writes and 15 MB/second reads. It
is more common for our applications to use a 65,536 request size. At this request size, the direct
writes were barely 3 MB/second! This came as quite a surprise, and was clearly not acceptable. So,
we reconfigured the filesystems to use a clean 8+1 lun. By eliminating the subvolume partitions, and
the two lun stripe, the performance of the filesystems improved by more than double.

Evaluation of the TP9400

A new computing requirement gave us the opportunity to upgrade our Origin service
from an 8 CPU Origin 2000, to a 64 processor Origin 3800. On the new Origin 3800,

we decided to use the TP9400 storage array device. This new workload had a
potential for a significantly intensive I/O traffic. Learning from our previous
experience, we setup a project to benchmark and evalulate the I/O performance of the
TP9400 storage array. We also made this a part of our acceptance criteria for the new
system.

In preparation for the benchmark, SGI provided us with a loaner Origin deskside, a
brocade switch, a TP9400 with a controller enclosure and one 73 GB disk enclosure.
The controller was configured with 2 front end minihubs (gbics) and 4 backend
minihubs, The datacenter installed an Onyx 2 system in order to perform the shared
filesystem testing. Our test plan consisted of the following steps.

Install test software on Origin and Onyx 2
Collect PCP pmlogger data to validate benchmark outputs
Direct attach the TP9400 to the Origin
Make a dedicated 4+1 XFS filesystem with a 2 lun stripe
Run the test script
Direct attach to the Onyx 2
Run the test script
Connect the TP9400, Origin and Onyx to the Brocade switch
Remake the filesystem as a CXFS
Run the test script standalone on the Origin
Run a standalone test on the Onyx 2
Run the test simutainiously on the Origin and the Onyx 2

A learning experience

Learning how to configure the TP9400 was at first fairly difficult. We found the man
pages for the various tools like xvm, cmgr, and the online help files for tpssm7 not
well integrated and didn’t provide an overall picture. But after some study, and some
help from SGI, we managed to configure dedicated and shared cxfs filesystems.
Essentually, we used the default settings in tpssm7 and xvm.

Dedicated Filesystem Test

Our initial benchmarks found simular results from both the Origin deskside and
Onyx2 systems. The PCP performance data matched very well the output results from
each of our benchmarks. Also, we found no difference in performance when the
TP9400 was direct attached or connected via the Brocade switch. Finally, each
system’s benchmarks performed on the CXFS shared filesystem were also consistant
with all the previous tests. The CXFS filesystem added no degradation to the
filesystem performance. A summary of these benchmarks are displayed in the
following chart.

Benchmark evaluation

The results were considerably better than the benchmarks performed on our humble Origin 2000.
But they were still consistantly lower than our expectations. Each Gbic mini-hub should be able
to sustain a maximum of 100MB per second. Striping across the two 4+1 LUNS, we expected the
transfer rates to be some what less than 200MB per second. However, the maximum observed
thoughput was less than half that rate! Running simutainious tests on both systems provided the
same maximum performance of around 80 MB per second. Also, running multiple streams on the
same system resulted in a rate linear to 80 MB/Sec divided by the number of streams. Clearly, we
were missing something in our configuration.

A new concept to us in working with the TP9400 is the fact that there are multiple paths through
the HBA controllers to the TP9400 controllers. Unless you configure it, the system will choose
it’s own primary path. After some digging, we found that the system choose the same primary
paths for each of our LUNS routing all the I/O through a single minihub. The scsifo -d command
displays these default paths. To improve benchmarks, we took the following actions.

Enabled Command Tag Queueing with xvm
Setup the primary paths by configuring a failover.conf
Rebuilt the filesystem with a 65536 block size
Increased the stripe size to 2048 Meg

Results after Tuning

As you can see from the above graph, the performance throughput considerably
improved. The performance co-pilot displays showed that the I/O was evenly
distributed via two HBA channels and the transfer rates where running at the limit
one would expect; limited by the bandwidth of the two front end Gbic hubs. The drop
in the read performance is explained by the fact we did not enable the read ahead
cache. Enabling the read ahead cache can improve performance, but since our
application workmix is very write intensive, we decided to configure the TP9400
cache to 80% write and 20% read and not enable the read ahead cache in order to
give preference to the write operations. We are still evaluating this decision, and once
more is known about the potential application workmix on the new 3800 platform,
the cache ratios will be adjusted and a we will make a final decision about enabling
the read ahead cache.

It is also interesting to note that the knee in the performance that occurs at the stripe
size boundry. This emphasizes the importance that of choosing a block size and stripe
size that matches the characteristics of your applications.

There be dragons here

In the process of our stress testing, we discovered a
serious problem. The system became unresponsive
when we ran 10 streams writing to 6 Gigabyte files.
The problem was reported to SGI (case number
2174429).

The problem occurs with any program performing
very large I/O to the TP9400 on either a cxfs or a
local lxvm. It does not occur on the local jbod scsi
disks. We were able to reproduce the problem with
any program that performs any significant I/O, like
diskperf or dd. As soon as the buffer cache is
flooded, programs running before the test will
continue to run, but appear to hang on exit. Once
this occurs, the I/O throughput drops to less than
2MB per second. If you are lucky enough to have a
session open, you have one chance to perform a
killall on the programs performing the I/O. If left alone, the system will eventually
recover. On our test system, one recovery took 6 hours to complete.

Sgi believes the problem is caused by something called the Macisort routine. This
routine sorts I/O operations to minimize disk head thrashing. The I/O requests are
performed not on the order of the requests but according to the physical layout of the
drive sectors. Apparently, the kernel was spending 100% of it’s resources sorting the
kernel buffer cache. Sgi provided us with a way of turning off the Macisort.
However, this did not fix the problem. After further analysis, sgi identified the
problem as bug number 817044 and is fixed in patch number 4230. This patch
requires some systune parameters.

xfs_dcount:
This parameter was introduced in a patch for CXFS. It controls how many xfsd
threads to start. When this parameter is set to 0, the default, the system will
allocate 4 xfsds plus one xfsd for every 32768 pages, after the first 32768 pages
of physical memory; up to the maximum of 13. The forumula is:
xfs_dcount=(memory_size*1024*1024-page_size*32768)/(32768 * page_size)

If you choose the non-default scaling, the maximum number of threads is 64.
The xfsd threads deamon does the disk block allocation for delayed allocation
buffers. These buffers have their space reserved when written to, but the actual
selection of disk blocks is delayed until a fsync(2) of the file or the buffer ages
long enough for bdflush to push it out to disk.

xfs_dcontention:
When non-zero, xfsd keeps track of what inodes it is working on, and will
avoid picking a buffer belonging to an inode that another xfsd is working on.

News of this patch came to us just 12 hours before our Origin 3800 was due to be put
into production. Unfortunatly, the degradation still occurs, even with xfs_dcontention
set to a non-zero value, so the problem remains under investigation.

Summary and Conclusions

The most important advice that I can give is that, on every I/O reconfiguration; take
the time to test your I/O performance. You may be very surprised what you find! The
standard IRIX distibution contains a standard tool called diskperf that does a very
complete I/O performance analysis benchmark. This utility is very simple to use. For
example, to perform a 3GB benchmark on the current filesystem:

/usr/sbin/diskperf -D -W -c3g testfile .

Sgi suggested that we enable Command Tag Queuing (CTQ). When enabled, the
drive will setup a queue for I/O requests. The CTQ is enabled in in fx with the
command: fx> label/set/parameters. Press enter until you see Enable CTQ. Fx will
then ask you to enter the queue depth. This queue depth is calculated by the following
forumula.

256 - (LUNS * hosts)

LUNS + hosts

When you build your filesystems, try to involve as many spindles as possible. And
for the best performance, never sub-partition your LUNS. We learned this lession the
hard way when we initially configured the Origin 2000 system.

The maximum rated performance of the TP9400 is approximatly 250 MB/second
write, and 350 MB/second read. The TP9400 can have up to 4 host interfaces called
front end hubs. Each of these interfaces have a performance limit of approximatly
100 MB/second. A very high performance filesystem can be built by striping across 4
LUNS, each configured as raid3 4+1. By setting your default primary paths, with the
/etc/failover.conf, to evenly distribute the I/O over all 4 host bus adapter (HBA)
controllers, the maximum throughput can be achieved.

At the time of our benchmark, the TP9400 was configured with only two host
interfaces. Also, the drives ordered were the high capacity 36GB disks. Binding a
filesystem described above would make a filesystem too large for our needs, and not
fit our service requirements. Performance probably would have been better if we had
configured the TP9400 with the smaller 18GB drives. But this is a case there where
we had to balance service definition requirements against configuring the system for
maximum performance.

