The Parallel Communication and I/O Bandwidth Benchmarks: b_eff and b_eff_io

Rolf Rabenseifner
High-Performance Computing Center Stuttgart (HLRS), University of Stuttgart,
rabenseifner@hlrs.de www.hlrs.de/people/rabenseifner

Alice E. Koniges
Lawrence Livermore National Laboratory,
koniges@llnl.gov www.rzg.mpg.de/~ack

CUG SUMMIT 2001
Indian Wells, California, USA, May 21-25, 2001

Outline

• Goals
• Survey of available benchmarking
• Definition of the b_eff and b_eff_io benchmarks
• Results
• Summary
• Future plans
Goals for Communication and File-I/O Benchmarking

- Measure the time needed for exchange of information between
 - processes themselves, and
 - processes and disk
- Model the message passing patterns of real applications
- Provide a number for quick comparison of different systems
- Can’t just measure simple send/receive or one I/O access:
 - Clock resolution
 - I/O caching
- So, traditional approach is to measure loops over specific patterns
 and quote e.g.,
 - 1) Ping-Pong Bandwidth
 - 2) Bi-Section Bandwidth
 - 3) Maximum I/O Bandwidth

Limits of some benchmarks

- Ping-Pong
 - is not a parallel benchmark
 - it is just a 2-processor-benchmark
 - buy 1000 dual-processor-PCs without any network
 --> you will see perfect ping-pong bandwidth
- Bi-Section Bandwidth
 - accumulated bandwidth
 - buy 1000 dual...
 with a slow Ethernet
 --> you will see perfect bi-section bandwidth
- Maximum I/O bandwidth
 - your application should never write a
 - small or medium-size package
 - and with size != 2**n
Effective Communication & I/O Bandwidth Benchmarks

Goals

- **Parallel Communication Benchmark**
- **Parallel File-I/O Benchmark**

 each process is involved!

- Detailed insight
 - bandwidth experiments of several
 - I/O or communication patterns
 - chunk or message sizes

- One characteristic value
 - based on experiments above
 - averaging

- Appropriate execution time for rapid benchmarking

b_eff

the

effective communication bandwidth
benchmark

The Parallel Communication and I/O Bandwidth Benchmarks: b_eff and b_eff_io

CUG SUMMIT 2001 – May 21-25, 2001
Definition of the Effective Communication Bandwidth Benchmark: \(b_{eff} \)

- 6 ring patterns
- 30 random patterns
- 13 additional patterns
- 21 message sizes
- 3 communication methods
- 3 times repeated

\[(6+30+13) \times 21 \times 3 \times 3 = 9261 \text{ experiments}\]

- 5 - 20 msec / experiment \(\rightarrow \) benchmark completes in a few minutes

Authors: Karl Solchenbach, Hans-Joachim Plum, and Gero Ritzenhoefer (Pallas), Rolf Rabenseifner (HLRS)

Website: www.hlrs.de/mpi/b_eff/

Definition of \(b_{eff} \) — communication patterns and sizes

- 6 ring patterns
 - ring size =
 - 2
 - 4
 - 8
 - \(\max(\#PE/4, 16) \)
 - \(\max(\#PE/2, 32) \)
 - \(\#PE \)

- 30 random patterns

- 21 message sizes
 - 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 byte, 1kB, 2kB, (12 sizes)
 - 9 logarithmic equidistant sizes: 4kB, \(\ldots, L_{\max} = \text{memory per PE} / 128 \)
Definition of b_{eff} — averaging

One characteristic accumulated communication bandwidth number := average bandwidth on several communication patterns average on different message sizes maximum over different MPI programming methods

$$b_{\text{eff}} = \logavg \left(\logavg \left(\text{avg} \left(\max_{\text{method}} \max_{\text{rep}} \left(b_{\text{pat},L,\text{method},\text{rep}} \right) \right) \right) \right),$$

with

- $b_{\text{pat},L,\text{method},\text{rep}}$ = accumulated bandwidth of each experiment over all processes
- methods: MPI_Sendrecv, MPI_Alltoall, and nonblocking Irecv&Isend&Waitall
- pat & L: patterns and message sizes, see previous slide
- rep: repetition number = 1..3
- avg: arithmetic mean
- logavg: geometric mean

Features of Effective Bandwidth benchmark

- Based on MPI, source code is available
- Measures total architecture, not only point-to-point
- Checks performance of architecture and not the quality of the MPI implementation
- Suited for MPP-architectures and clusters
- Runs on any number of processors
- Results are easy to understand
- Generates a single number b_{eff} (like LINPACK R_{max})
B_eff is monotonic. B_eff/proc is roughly constant indicating scalable balance (see next slide).

Snow Bandwidth
16 8-way SMP Nighthawk Nodes

B_eff Scaling: current systems

The Parallel Communication and I/O Bandwidth Benchmarks: b_eff and b_eff_io
CUG SUMMIT 2001 – May 21-25, 2001
b_eff_io

the effective MPI-I/O bandwidth benchmark

What about an I/O Benchmark? Starting-Points:

• Application benchmarks
 – using real, I/O-intensive applications
• File system benchmarks
 – measuring several parameters
 around the most friendly disk-usage-pattern
• Hardware benchmarks
 – maximum bandwidth of the disk — special-benchmark

• Why a new benchmark for parallel I/O?
 – application / file system / hardware independent
 – but, average on possible application scenarios
 – portable
 ==> MPI-I/O based benchmark

The Parallel Communication and I/O Bandwidth Benchmarks: b_eff and b_eff_io
CUG SUMMIT 2001 – May 21-25, 2001 – 7 –
Starting-Points — the I/O Parameter Space

- How to define and measure one characteristic I/O bandwidth value?
- The I/O parameter space — 20 orthogonal parameters:
 - Application parameters:
 - (a) the size of contiguous chunks in the memory, (b) on disk, (c) ...
 - Usage aspects:
 - (a) how many processes are used
 - (b) how many parallel processors and threads are used for each process.
 - I/O interface:
 - (a) Posix I/O buffered or (b) raw,
 - (c) special filesystem I/O of the vendor filesystem,
 - (d) MPI I/O.
 - MPI I/O aspects:
 - (a) access methods, i.e., first writing of a file, rewriting or reading, (b) ...
 - (c) coordination, i.e., collectively or noncollectively, (d) ...
 - Filesystem parameters:
 - (a) which filesystem is used,
 - (b) how many nodes are used as I/O servers, (c) ...
 (full list, see paper)

Existing I/O Benchmarking Techniques

- An example of I/O benchmarking papers:

 “Performance of the IBM General Parallel File System,”
 Terry Jones, Alice Koniges, R. Kim Yates,
 Proceedings of the International Parallel and Distributed
 Processing Symposium, May 2000. Also available as UCRL JC135828

 - many hours of dedicated benchmarking time is used
 - characterizing a specific system
 - not portable
 - Rule: Balanced HPC systems should be able to write the total
 memory in 10 minutes to disk

 ==> An I/O benchmark should not need hours!
 — 10 minutes may be enough to overrun any cache!
Definition of the Effective File-I/O Bandwidth Benchmark: \texttt{b_eff_io}

- 5 I/O patterns
- 7 chunk sizes
- 3 accesses (initial write, rewrite, read)
- 3 compute partition sizes (number of parallel benchmark processes)
- benchmark completes in \(\sim\)30 minutes
- \url{www.hlrs.de/mpi/b_eff_io/}

Definition of \texttt{b_eff_io}

(Release 1.0)

\[
\texttt{b_eff_io} := \text{Maximum over all usage and filesystem parameters}\quad \text{manually-temporally,}
\]
\[
\text{Average on write, rewrite, read}\quad \text{in time}
\]
\[
\text{Average on five access pattern types}\quad \text{T=30 min.}
\]
\[
\text{Average on several chunk size values*}\quad \text{of measured bandwidth}
\]

*) defines the size of contiguous chunks written to disk and the contiguous chunk in memory written by each MPI call.
Definition of b_eff_io — the Pattern Types

- Pattern that can be optimized
- Chunk sizes on disk:
 - max (2 MB, memory of one node/128) *)
 - wellformed: 1 MB, *)
 - non-wellformed: 1 MB+8B, *)
 - double weighted

Definition of b_eff_io — Bandwidth measurement

- Bandwidth measurement
 - MPI_Barrier()
 - start_time = MPI_Wtime() at root only
 - repeat
 - MPI_File_write() or MPI_File_read()
 - MPI_Barrier()
 - conti = (MPI_Wtime()- start_time) < time_unit
 - MPI_Bcast(conti)
 - while conti
 - if (write access) MPI_File_sync()
 - MPI_Barrier()
 - end_time = MPI_Wtime() at root only
 - bandwidth = (accumulated data size)
 / (end_time - start_time)
Output of the b_eff_io benchmark program

- the b_eff_io value

<table>
<thead>
<tr>
<th>Access Method</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>write</td>
<td>21.530 MB/s</td>
</tr>
<tr>
<td>rewrite</td>
<td>29.472 MB/s</td>
</tr>
<tr>
<td>read</td>
<td>93.602 MB/s</td>
</tr>
</tbody>
</table>

- weighted average bandwidth for write: 21.530 MB/s on 16 processes
- weighted average bandwidth for rewrite: 29.472 MB/s on 16 processes
- weighted average bandwidth for read: 93.602 MB/s on 16 processes

Total amount of data written/read with each access method: 17589.682 MBytes
= 26.8 percent of the total memory (65536 MBytes)

b_eff_io of these measurements = 59.552 MB/s
on 16 processes with 128 MByte/PE and scheduled time=30.0 min
on sn6715 hww3e 2.0.5.34 unicosmk CRAY T3E

- Total memory / b_eff_io = 65536 Mbytes / 59.552 MB/s = 18.3 min.

- detailed results
 - as ASCII table
 - one page with 3+5 plots
 - all measurements sorted by access: write / rewrites / reads
 - and same sorted by pattern types: type-0 / type-1 / type-2 / type-3 / type-4

Time-driven approach

- b_eff
 - for each message size:
 - loop length is based on execution time of next smaller message size
 - starting loop length for each pattern and method
 = 300 (release <= 3.3)
 = based on a quick latency measurement with 10 iterations (rel.>3.3)

- b_eff_io
 - first write
 & pattern types 0-2 (scatter collective, shared collective, separated files):
 - writing until scheduled time is over for each pattern and chunk size
 - first write & pattern types 3+4 (segmented file, collective and not):
 - pre-calculated repeating factors,
 - based on measured execution times with pattern types 0-2
 - rewrite & read: same amount of data as with “first write”
I/O Results — Comparing systems

- Cray T3E 900-512 at HLRS/RUS, Stuttgart
 - 512 processors
 - 10 striped Raid-disks, connected via GigaRing
 - mpt.1.3.0.2 with ROMIO, modified: using asynchronous I/O
 - www.hlrs.de/mpi/mpi_t3e.html#StripedIO
 - www.hlrs.de/mpi/ufs_t3e/
 - theoretical peak throughput = 300 MB/s

- IBM RS 6000/SP at LLNL, called “blue pacific”
 - 336 SMP nodes with each 4 processors
 - benchmark using 1 processor per node
 - IBM General Parallel File System (GPFS) with 20 VSD I/O server
 - ROMIO
 - measured peak performance: 950 MB/s read, 690 MB/s write (on 128 nodes)

- NEC SX-5Be/32M2 at HLRS/RUS, Stuttgart
 - 2 SMP nodes with each 16 processors
 - benchmark only on one SMP node
 - SFS filesystem, 4MB block size
 - I/O requests less than 1 MB are cached on 2 GB filesystem-memory-cache

Full bandwidth on Cray T3E:
- about 30% of peak performance
- reached already with 8 processors!
=> optimal for any load:
 many small jobs ... one large job

Full Bandwidth IBM SP:
- about 35% of peak performance
- reachable only with high-CPU-count jobs
- higher absolute values
 (b_eff_io and total memory size)
First Results — Interpretation

- maximum bandwidth / partition sizes
- small influence of scheduled time T
- benchmarked platforms: MPI-I/O is optimal only for one pattern type
- but different optimal type on each platform
- non-wellformed data sizes: worse I/O bandwidth
- (re)write bandwidth \ll read bandwidth
- no chance to predict bandwidth for other patterns

Detailed Results – Cray T3E-900/512 at HLRS

- weighted average bandwidth for write: 12 MB/s on 32 processes (25%)
- weighted average bandwidth for rewrite: 21 MB/s on 32 processes (25%)
- weighted average bandwidth for read: 98 MB/s on 32 processes (50%)
- b_{eff_io} of these measurements = 57 MB/s on 32 processes
Results: “write” on Cray T3E, IBM SP, and NEC SX-5

- **Cray T3E**
 - 32 Pes
 - T=30 min.
 - (b_eff_io=57 MB/s)

- **IBM SP**
 - 128 nodes
 - T=30 min.
 - (b_eff_io=63 MB/s)

- **NEC SX-5**
 - 4 nodes
 - T=30 min.
 - (b_eff_io=60 MB/s)

Summary: b_eff_io

Effective I/O Bandwidth Benchmark (b_eff_io)
- characteristic average number for I/O bandwidth
- detailed information about several patterns:
 - access pattern types,
 - buffer sizes,
 - access methods (initial write, rewrite, read)
- 30 minutes for a first pass on any platform

Sample results
- Cray T3E900-512 and NEC SX-5 at HLRS
- IBM RS 6000/SP at LLNL (“blue pacific”)

Usable on MPP systems, SMP systems, and on clusters of SMPs
- more info: www.hlrs.de/mpi/b_eff_io/
Summary: \textit{b_eff}

Effective Communication Bandwidth Benchmark (\textit{b_eff})
- characteristic average number for accumulated communication bandwidth
- detailed information about several patterns:
 - ring patterns, random patterns, and some additional patterns,
 - 21 message sizes,
 - transfer methods (\texttt{sendrecv}, \texttt{alltoallv}, and nonblocking \texttt{Irecv+Isend})
- balance = comparing \textit{b_eff} with \textit{Rmax} (LINPACK)
- \~3-5 minutes on any platform

Results on several platforms

Usable on MPP systems, SMP systems, and on clusters of SMPs
- more info: \url{www.hlrs.de/mpi/b_eff/}

Outlook

- \url{www.top500clusters.org}
- Issues
 - collecting hardware characteristics of clusters
 - several benchmark results
 - stored in a database
 - web-interface
 - each reader can define his own weights, and
 - can receive a personal weighted (ranked) list of all clusters
 - automatic \textit{b_eff_io} for 3 different numbers of processors
- Status
 - hardware information: some clusters already stored in database
 - benchmarks and web-interface: under discussion
 - \textit{b_eff} and \textit{b_eff_io} under evaluation
Acknowledgements

Thanks to pallas.
They initiated this project with their bi-section based b_eff benchmark.

Work by Lawrence Livermore National Laboratory
is performed under the auspices of the U.S. Department
of Energy by the University of California

Further information:
www.hlrs.de/mpi/b_eff
www.hlrs.de/mpi/b_eff_io
www.hlrs.de/mpi/mpi_t3e.html#StripedIO
www.hlrs.de/mpi/ufs_t3e