Topology Aware Scheduling in the LSF
Distributed Resource Manager

Chris Smith, Bill McMillan, and lan Lumb

Platform Computing Corporation, Markham, Ontario, Canada
email: [csmith,billm,ilumb]@platform.com

ABSTRACT: Explicit job topology
requirements provide a challenge for
traditional batch queueing environ-
ments which aren’t aware of the cc-
NUMA characteristics of the Origin
family of systems. This paper de-
scribes the integration of the LSF Dis-
tributed Resource Management frame-
work with the IRIX cpuset API. The
integration needs to address the issues
of how to place jobs within a cpuset,
how to decide which CPUs should be
included in a cpuset based on the cpu
and memory requirements of the job,
and how to decide whether or not a
particular machine can fulfill the job
topology requirements at the time, or
whether the job needs to wait for the
topology requirements to be satisfied.
LSF system was enhanced to provide
an external scheduler interface to sup-
port topology scheduling and a job ex-
ecution plug-in interface to support the
binding of jobs to cpusets.

1 Introduction

The cache-coherent, non-uniform
memory access (ccNUMA) architec-
ture of the Origin family of systems
has enabled the manufacture of very
large configuration computer systems
(up to 512 nodes boards for the Ori-
gin 2000, for 1024 processors, with
up to 4GB per node board)[1]. This
form of machine configuration allows

programmers to run massively parallel
programs, with very large memory re-
quirements, using shared-memory pro-
gramming semantics.

The NUMA aspects of the machine
are not completely transparent to the
programmer, though. While allowing
processes to make use of very large
process address spaces, the latency in-
troduced by the non-uniform memory
access model has made job runtime
very dependent on the combination of
CPUs which a job is scheduled onto. It
has been noted that parallel programs
can suffer from unpredictable runtimes
based on the location where the shared
memory segments for the program re-
side. It is possible for program pages to
reside “far” from the processing of the
data due to the first-touch page place-
ment algorithm employed by IRIX[2].

There are many tools provided for
programmers by which they can ana-
lyze their program dependencies (per-
fex), employ optimization algorithms
on page placement (automatic page
migration), and request specific mem-
ory and process mapping to node
boards (topology specification using
dplace)[3].

While the use of these tools allows
a programmer to optimally run a job
on a NUMA machine, one programmer
is typically not the only programmer
to make use of a large configuration
machine. When multiple programmers

are contending for the memory and
CPU resources of a computer, the goal
of optimal job placement might con-
flict with the goal of optimally utilizing
the machine’s capabilities. In short,
users will be competing for their share
of the machine resources.

In order to address the contention
over resources, systems will typically
run resource management software to
manage user access to the memory and
CPUs of the system. SGI has pro-
vided some mechanisms to manage this
issue[4]:

e The Miser batch queueing system.
Miser allows users to “reserve”
CPUs and memory for exclusive
use for a user specified period of
time. A user will submit a job
to Miser, which will then choose
a time slot when the job, with its
particular CPU and memory re-
quirements, can run.

e Cpusets. Cpusets are used to
specify CPU and memory affinity
for families of processes. They can
be allocated both in “open” and
“exclusive” modes, so that jobs
will not only be contained on a
subset of the system’s CPUs, but
they may be given exclusive access
to those CPUs as well.

The problem with these mechanisms
is that they are statically configured or
configured ad-hoc. Miser queues are
maintained by the system administra-
tor and cannot be changed automati-
cally to provide fairness between users,
and cannot be changed automatically
to rebalance the system between inter-
active and batch environments. Miser
also doesn’t attempt to address job
topology requirements which can have
a measureable impact on job perfor-
mance.

Cpusets, on the other hand, can be
created dynamically out of the avail-
able machine resources, but they aren’t
governed by any type of resource allo-
cation policy that is evident in Miser
and other resource managers.

In order to combine policy-based
scheduling with enforcement of job
topology and CPU requirements, we
have implemented a topology aware
scheduling mechanism for the LSF dis-
tributed resource manager.

2 Motivation

The current form of the LSF sched-
uler sees SMP machines as a collection
of a number of CPUs along with a large
amount of shared memory. Scheduling
is done based on the number of “CPU
slots” which have already been allo-
cated to jobs, along with the current
runtime load on the machine, but there
is not necessarily a direct mapping of
an LSF “CPU slot” to an actual CPU
since the LSF scheduler cannot enforce
a “CPU reservation” without the aid of
the operating system.

The use of the IRIX cpuset API al-
lows LSF to enforce it’s CPU alloca-
tions for jobs. Not only does the cpuset
provide “containment” so that an eight
CPU job will only run on eight CPUs,
but it provides a “reservation” so that
those eight CPUs are guaranteed to be
available only for the job which they
were allocated to.

In addition to this basic view of the
SMP, LSF does not inherently under-
stand the ccNUMA characteristics of
the machine. Two hosts with an iden-
tical number of free “CPU slots” would
be considered equivalent, even though
the job’s topology requirements might
fit more readily onto one of the two

hosts. This choice of host might have
a significant impact on the runtime of
the job.

In order to properly make use of the
cpuset API on a large Origin class ma-
chine, LSF needs to understand how to
properly choose the CPUs which will
be in a cpuset. In some cases, it is
better for a job to wait until the de-
sired CPUs are available rather than
be run on a set of CPUs which might
increase the job runtime. Thus, the
LSF scheduler needs to know how to
decide whether a host can currently
fulfill a job’s topology requirements.

3 Design

The ultimate goal of the LSF inte-
gration with cpusets is to provide a
mechanism such that an LSF job may
be run in a cpuset. This might be so
that a job can guarantee some CPU
affinity to support a job topology re-
quirement, or in order to allow a job to
have exclusive access to it’s allocated
CPUs, avoiding The effect of thread
migration and cache flushes. The in-
tegration must also support a mix of
jobs, some of which run in a cpuset and
some of which don’t.

We investigated three approaches to
cpuset integration.

e First, LSF could run jobs in stat-
ically defined cpusets. That is, a
number of cpusets would be de-
fined at system boot time for use
by the resource management sys-
tem. Both open and exclusive
cpusets could be used in this case,
but it would be difficult to sup-
port the multitude of combina-
tions of cpuset options required by
the wide range of user jobs. This
approach would work in a situa-

tion where we wanted to coarsely
separate the machine into batch
and interactive sections.

e A second approach would be to
allocate cpusets dynamically us-
ing a first-fit algorithm. This
approach would allow each job
to run in its own exclusive
cpuset, thus providing enforce-
ment for LSF’s per job CPU al-
location. It would also allow
the optional use of cpuset options
such as MEMORY_EXCLUSIVE
or MEMORY_MANDATORY on
a per job basis. The problem with
this approach is that a first-fit al-
gorithm would not provide opti-
mal allocation of CPUs based on
a job’s specific topology require-
ments. The advantage of this so-
lution is that the LSF scheduler
would not require any changes,
since it can already schedule based
on the availability of CPU slots.

e The third approach is an ex-
tension of the second method
whereby we introduce the ability
to schedule jobs based on cpuset
topology requirements. That is,
LSF scheduler is enhanced to
make a job placement decision,
or whether to wait to run a job,
based on the availability of a par-
ticular CPU topology.

While the third approach is more
complicated to implement, discus-
sions with prospective cpuset users
highlighted the importance of CPU
placement for parallel jobs on Origin
servers.

In order to integrate LSF with the
cpuset mechanism we needed to iden-
tify the events during a job lifecycle
where interaction is required. Five dif-
ferent key events were identified:

1. Expression of the topology re-
quirement. A mechanism is re-
quired which will allow a user to
define the topology requirements
for the job so that a scheduler
can make a host placement deci-
sion. This mechanism needs to
support the existing cpuset allo-
cation options, as well as provide
a means for extending the expres-
sion without changing the under-
lying mechanism.

2. Scheduling to a host which could
satisfy the topology requirement.
Since LSF inherently does not un-
derstand ccNUMA architecture,
and since the underlying archi-
tecture might be changed, a
scheduling mechanism was re-
quired which could be updated
without needing to change the
LSF scheduler itself. This mecha-
nism could be subdivided into two
distinct service functions:

e The first is an informa-
tion service which provides
the current cpuset state and
availability for a given host.
This service needs to un-
derstand the underlying cc-
NUMA topology of the host.

e The second is a centralized
scheduling service for match-
ing user specified topology
requests with currently avail-
able resource topologies.

3. Creation of the cpuset. After a
host had been selected to run the
job, and the job has been dis-
patched to this execution host, the
cpuset for the job needs to be
allocated according to the topol-
ogy requirement for the job. The
cpuset at this time must also be
named in such a way that later

actions can derive the name from
known process state (e.g. the LSF
job id).

4. Binding the processes of the job to
the cpuset. Once the cpuset has
been allocated, the job itself needs
to be bound to this cpuset. Care
must be taken to make sure that
the entire process tree of the job
is contained within the cpuset.

5. Cpuset deallocation. Once the job
has completed, the resources used
by the cpuset need to be released.

Underlying these requirements was
the goal of making the scheme exten-
sible. This was done so that future
work on the cpuset mechanism, more
optimized topology scheduling algo-
rithms, or different underlying hard-
ware topologies, could be done with-
out needing to redesign or reimplement
the framework supporting the NUMA
scheduling.

4 Architecture

The implementation of the cpuset
integration according to the above de-
sign criterion was done using a set of
different architectural modules which
interacted with each other.

4.1 Host-based
Daemon

Topology

A daemon runs on each host which
supports the cpusets. This daemon is
responsible for keeping track of the ma-
chine’s hardware graph, as well as the
current allocation of cpusets. By hav-
ing a current snapshot of the hardware
graph and in-use CPUs in one place,
there is a single decision point as to
whether a particular topology can be
satisfied. This daemon considers boot

cpusets and cpusets manually created
by the system managers, and adjusts
its notion of CPU availability based on
that information.

This daemon also performs the
cpuset specific actions of allocation
and deallocation (an operation which
needs to be done as the root user).
It supports protocol interfaces for per-
forming queries, allocation and deallo-
cations.

4.2 External Scheduler

An external scheduling module was
implemented to keep the specifics of
NUMA aware scheduling external to
the main LSF scheduling loop. The
interface between the LSF scheduler
and this external scheduler is a func-
tional interface. Among other opera-
tions, there is an operation so that the
LSF scheduler can ask “does this host
satisfy requirement X” without need-
ing to understand any details about X.
Another operation is to sort the list
of hosts which can satisfy the require-
ment by which one provides the “best”
topology.

Essentially, the external scheduler
acts as a “request broker”, since it
translates the user-supplied topology
requirement to an availability query to
a host’s topology daemon, which then
interprets the request and makes a re-

ply.

4.3 Job Execution “plug-in”
Functions

LSF currently provides various site
configuration hooks which are called
during a job’s execution lifecycle[5].
There is a pre-execution function, a
“job starter” function (interposed be-
tween the slave batch daemon and the

execution of the actual job), and a
post-execution function. These mech-
anisms could have been used to imple-
ment the allocation, binding and deal-
location of the cpuset, however this
would have made the interface cum-
bersome for users wishing to perform
other functions using these hooks.

A shared object is loaded into the
slave batch daemon which provides en-
try points for pre and post job process-
ing. One entry point is used to allocate
a cpuset, one for binding the job to the
cpuset, and another for deallocaing the
cpuset. Using a shared object allows
the implementation of these functions
to change without requiring modifica-
tions to LSF’s slave batch daemon.

4.4 Module Interactions

The modules use various ways to
communicate with each other in order
to implement the five actions identified
in section 3. The interactions are dia-
grammed in figure 1 (on page 10). The
numbers in the diagram are referenced
in the interaction description below.

A job submission time (1 in the di-
agram), the user defines the topology
requirement for the job by using the
new “-extsched” command-line option
to LSF’s bsub command. This op-
tion attaches the topology requirement
string to the job using the new bpost
functionality from LSF 4.0. This at-
tachment can then be read using the
bread command (or the equivalent LSF
library API).

An example of an LSF submis-
sion command which attaches a job
(command-line “command”) to an ex-
clusive cpuset using CPUs 24 to
39 and 48 to 5H3. The MEM-
ORY_MANDATORY option is speci-
fied to restrict memory allocations for

the processes from the nodes on which
the CPUs reside.

bsub -n 32 -extsched \
‘CPU_LIST=..;CPUSET_OPTIONS=..’\
command

where:
CPU_LIST=24-39,48-53
CPUSET_OPTIONS=\
CPUSET_CPU_EXCLUSIVE\

| CPUSET_MEMORY _MANDATORY

In order to schedule the request, the
LSF scheduler (MBD) calls into the
LSF scheduler (2) which then queries
the topology daemon on a host to
see if it can satisfy the job’s topol-
ogy requirements (3). These require-
ments are “bread” from the job, and
then passed in the query message.
The topology daemon then responds
whether or not it can schedule the
job. Since the external scheduler
queries are performed within the LSF
scheduler’s normal scheduling run, the
topology daemon query only repre-
sents one “filter” for job candidate
hosts. This means that the external
scheduler will coexist with LSF’s cur-
rent scheduling algorithms and mech-
anisms, such as scheduling based on
resource requirements (e.g. the job
needs one gigabyte of memory), the
preemption algorithm, fairshare, and
CPU slot reservation, to name a few.

After the scheduling run, a job will
have a list of hosts which can satisfy
the topology requirement for the job.
This list is then passed to the external
scheduler, which then reorders the list
based on the cpuset which has “best”
topology available. For the best-fit
algorithm this would be the cpuset

which offers the shortest radius be-
tween CPUs in the cpuset.

Once the execution host has been se-
lected, and the job has been dispatched
to the slave batch daemon (SBD) on
that host to run (4), the slave batch
daemon will call a plug-in function to
allocate the cpuset. This function will
ask the topology daemon(5) to create
the cpuset on behalf of the job(6). The
LSF job id will be passed to the topol-
ogy daemon so that the cpuset can be
named using the unique LSF job id,
thus allowing the later stages of the
process to properly identify the cpuset.
The topology requirements will also
be “bread” again so that the topology
daemon can allocate the proper set of
CPUs.

Another plug-in function is then
called to bind the job to the cpuset
(7). This plug-in function needs to
be called in a process which will ul-
timately be a parent for the entire job.
Since it is called from the slave batch
daemon, this can be guaranteed.

Lastly, once the job has completed
and it’s processes exited, a plug-in
function is called to ask the topology
daemon to deallocate the cpuset.

5 Results

The use of IRIX cpusets with LSF
has shown to have a positive effect on
throughput benchmarks run by SGI in
response to customer benchmark re-
quests.

Once such benchmark consisted of
a mix of 50 MPI jobs (one was a hy-
brid MPI/OpenMP job)[6]. The mix
as provided by the customer (Mix A)
was not to be changed (in terms of or-
dering and number of cpus), included
some 5 minute sleeps during job sub-

mission, and was run on a 128 proces-
sor, 128 gigabyte Origin 3000 machine.
1

The ideal mix time (with no sleeps)
was calculated to be 2:21:22, using the
formula:

sum(jobwallclock * numprocs)

numprocs

The LSF configuration used in-
cluded a job slot limit at the
host level of 128 (one slot per
cpu). To reduce dispatch delays
the JOB_ACCEPT_INTERVAL for
the cluster was 0 (meaning multi-
ple jobs could be dispatched to a
host on one scheduling run), and
NEW_JOB_SCHED DELAY for the
queue was set to 0 (so that a
scheduling run would be initiated
as soon as a job was accepted by
LSF). When cpusets were used, they
were created with the cpuset option
CPUSET_MEMORY _LOCAL.

Running through LSF without the
cpuset integration yielded a runtime
of 4:19:01. Of note was the variance
in runtime between two identical jobs,
one which ran in 39:34.36 and one
which ran in 8:17.02.

Running through LSF with the
cpuset integration yielded a runtime of
2:51:06. The two identical jobs men-
tioned previously ran with much less
variance. Job 1 in 8:08.39 and job 2 in
8:03.69.

Running the benchmark again with-
out the sleeps yielded a runtime of
2:35:47.

See table 1 for the summary of re-
sults, and table 2 (on page 11) for a
breakdown of individual job runtimes

IDue to the need to keep details of the
customer request confidential, the actual ap-
plications run in the benchmark cannot be
described in this paper.

with and without cpusets compared to
the ideal runtime.

Mix condition | Runtime
Ideal time 2:21:22
Without cpusets 4:19:01
With cpusets 2:51:06
No sleeps 2:35:47

Tab. 1: Summary of Mix A runtimes

6 Future Work

A number of future enhancements
can be made to the implemented topol-
ogy scheduling framework:

e The external scheduler interface
can be extended. Currently the
interface supports functions to de-
cide whether a host is suitable for
providing the resources required
by a job. Further interfaces could
be defined at different points in
the scheduler to allow external al-
gorithms for determining which
user should go next, or to help
resolve external job dependencies
(e.g. a file transfer has com-
pleted), or to call to another, 3rd
party scheduler (e.g. Maui sched-
uler).

e The external scheduler interface
could be publicized, and an SDK
developed so that sites can pro-
gram their own scheduling algo-
rithms for LSF.

e Different algorithms for topology
scheduling can be examined and
implemented. For example, topol-
ogy requirements could come from
a dplace file, or an algorithm could
be developed to schedule in a “hy-

percube” topology, rather than
the “cluster” topology.

7 Concluding Remarks

We presented an architecture for
topology aware scheduling within the
LSF distributed resource manager, and
the use of IRIX cpusets to enforce
the topology and CPU allocation for
jobs by the LSF scheduler. The in-
tegration was designed by examining
which events during a job’s lifecycle
need to be modified to deal with the
scheduling and allocation of cpusets,
and discussed the architectural mod-
ules which implement the integration.

We found that it was very impor-
tant to identify the events during a
job’s lifecycle where topology schedul-
ing decisions and actions needed to
be taken. By making this analysis,
it was straightforward to design archi-
tectural components which could deal
with each event, thus encapsulating
each step in a smaller, more focused
module, which was easier to imple-
ment.

The component approach also al-
lowed us to design an external sched-
uler to extend the LSF scheduling ca-
pability. This was a better approach
than “hard-coding” the understanding
of ccNUMA architecture into the LSF
scheduler, since the architecture may
change, and is specific to a particular
hardware and operating system plat-
form. The external scheduler also pro-
vides the beginnings of a framework by
which the LSF scheduler could be eas-
ily modified to support arbitrary ex-
ternal scheduling algorithms (not just
NUMA schedulers), much improving
LSF’s extensibility.

As expected, the use of cpusets for

running jobs decreased the runtime
variability of parallel tasks. Moreover,
the combination of LSF with cpusets
yielded an improvement of at least 50%
on a simple throughput benchmark,
and with some submission improve-
ment (no sleeps), the benchmark ran
only 10% longer than the ideal mix
time.

Finally, it is interesting to note the
verification of some past LSF architec-
tural improvements. The bpost/bread
mechanism was introduced in LSF 4.0
in order to facilitate the integration of
LSF with third-party software pack-
ages. By making use of this mecha-
nism within the implementation of the
external scheduler, we have verified the
utility of the bpost/bread functional-
ity, and set an example for how this
functionality can be used.

Acknowledgements. We would like to
acknowledge Dan Jones at FNMOC for
his role in the development of some
of the concepts inherent in topology
scheduling during an implementation
of similar functionality at FNMOC by
SGI and Platform Computing.

The authors also would like to ac-
knowledge Dave Anderson from SGI
for providing the benchmarking data
presented here in Section 5.

References
1. James Laudon and Daniel Lenoski:

The SGI Origin: A ccNUMA
Highly Scalable Server. From

http://www.sgi.com/origin/images/isca.pdf.

2. Talbot & Kelly: Stable perfor-
mance for cc-NUMA using first-
touch placement and reactive prox-
ies, High Performance Computing
Systems and Applications, J. Schaef-
fer (ed.), Kluwer Academic Publish-

ers, 1998.

. Origin2000 and Onyx2 Performance
Tuning and Optimization Guide,
Document Number 007-3430-002,
Silicon Graphics, Inc., 1998.

. IRIX Admin: Resource Administra-
tion, Document Number 007-3700-
003, Silicon Graphics, Inc., 2000.

. LSF Administrator’s Guide, Plat-
form Computing Corporation, 2000.
. Anderson, D. Private communica-
tion, May 2001.

bsub

JOB SUBMISSION

CPU_LIST=...
1. CPUSET_OPTIONS=...

LSF
Scheduler

External
Scheduler

3

CPU_LIST=...
CPUSET_OPTIONS=...

JOB DISPATCH

Execution Host

Topology
Daemon

Fig. 1: Module interactions for topology scheduling

10

Code Time dedi- | Time with- [Ratio w/o | Time with [Ratio with
cated out cpusets | over dedi- | cpusets over dedi-
cated cated
001_pgm_03 0:29:20 0:31:25 1.07 0:30:04 1.03
002_pgm_03 0:16:29 0:20:17 1.23 0:16:32 1.00
003_pgm_11 0:17:42 0:19:13 1.09 0:18:14 1.03
004_pgm_12 0:04:59 0:06:52 1.38 0:05:04 1.02
005_pgm_06 0:04:41 0:04:55 1.05 0:04:56 1.05
006_pgm_08 0:13:52 0:15:49 1.14 0:12:53 0.93
007_pgm_06 0:04:41 0:05:00 1.07 0:04:54 1.04
008_pgm_12 0:04:59 0:07:26 1.49 0:05:07 1.03
009_pgm_02 1:03:29 2:23:00 2.25 1:03:29 1.00
010_pgm_10 0:27:24 0:27:40 1.01 0:28:32 1.04
011_pgm_09 0:11:31 0:21:51 1.90 0:11:18 0.98
012_pgm_02 1:03:29 3:22:44 3.19 1:02:33 0.99
013_pgm_11 0:17:42 0:18:46 1.06 0:17:48 1.01
014_pgm 01 0:40:00 0:37:41 0.94 0:36:16 0.91
015_pgm_06 0:02:58 0:03:01 1.01 0:02:58 1.00
016_pgm_08 0:26:15 1:18:46 3.00 0:26:29 1.01
017_pgm_01 0:20:00 0:34:15 1.71 0:18:23 0.92
018_pgm_06 0:02:58 0:02:59 1.01 0:02:58 1.00
019_pgm_06 0:01:13 0:01:25 1.17 0:01:15 1.03
020_pgm_08 0:51:07 0:50:16 0.98 0:48:52 0.96
021_pgm_06 0:07:32 0:07:39 1.02 0:07:33 1.00
022_pgm_06 0:01:13 0:01:16 1.04 0:01:15 1.02
023_pgm_07 0:02:37 0:03:22 1.28 0:03:09 1.20
024_pgm_06 0:01:13 0:01:16 1.04 0:01:15 1.03
025_pgm_03 0:17:54 0:18:33 1.04 0:18:25 1.03
026_pgm_04 0:40:11 0:55:58 1.39 0:35:08 0.87
027_pgm_06 0:01:13 0:01:19 1.09 0:01:14 1.02
028_pgm_05 0:11:43 0:13:21 1.14 0:12:03 1.03
029_pgm_07 0:02:37 0:07:36 2.91 0:02:45 1.05
030_pgm_08 0:51:07 1:05:15 1.28 0:48:51 0.96
031_pgm_07 0:02:37 0:02:44 1.04 0:02:45 1.05
032_pgm_12 0:04:59 0:12:57 2.60 0:05:02 1.01
033_pgm_11 0:11:03 0:11:07 1.01 0:11:07 1.01
034_pgm_06 0:02:58 0:03:02 1.02 0:02:58 1.00
035_pgm_08 0:26:15 1:42:12 3.89 0:26:37 1.01
036_pgm_06 0:07:32 0:07:41 1.02 0:07:33 1.00
037_pgm_01 0:40:00 0:37:33 0.94 0:36:32 0.91
038_pgm_02 0:07:35 0:39:34 5.22 0:08:08 1.07
039_pgm_02 0:07:35 0:08:17 1.09 0:08:04 1.06
040_pgm_03 0:53:05 0:55:18 1.04 0:53:38 1.01
041_pgm_12 0:04:59 0:07:23 1.48 0:04:59 1.00
042_pgm_12 0:04:59 0:08:36 1.73 0:05:01 1.01
043_pgm_06 0:01:13 0:01:22 1.12 0:01:19 1.09
044_pgm _08 0:13:52 0:58:20 4.21 0:12:56 0.93
045_pgm_12 0:04:59 0:06:25 1.29 0:05:01 1.01
046_pgm_11 0:17:42 0:18:19 1.04 0:17:41 1.00
047_pgm_06 0:07:32 0:07:36 1.01 0:07:32 1.00
048_pgm 01 0:20:00 0:21:37 1.08 0:18:21 0.92
049_pgm 01 0:02:14 0:02:26 1.09 0:02:23 1.07
Averages 1.53 1.01

Tab. 2: Breakdown of job runtimes for Mix A

11

