Parallel I/O Experiences on an SGI 750 Cluster

Troy Baer Science and Technology Support Group High Performance Computing Ohio Supercomputer Center Columbus OH, USA troy@osc.edu

Overview

- Motivation
- Systems Used
 - SGI 750 Itanium Cluster
 - SGI Origin 2000 Mass Storage Server
 - Parallel File System Cluster
 - Network Infrastructure
- Benchmarks
 - bonnie
 - ROMIO perf
 - NAS btio
 - ASCI Flash I/O
 - 2D Laplace Solver
- Conclusions and Future Work

Motivation

- Linux cluster systems are generally pretty effective at getting computations done in parallel.
 - Interconnects (Gigabit Ethernet, Myrinet, Quadrics) are getting reasonably fast
 - Cluster software (eg. MPICH, PBS/Maui) is maturing
- Storage is another matter entirely.
 - Potentially lots of unshared local disks
 - NFS performance limited by
 - protocol
 - capabilities of NFS server
 - quality of NFS client implementation
 - SAN storage doesn't scale to large numbers of nodes affordably (yet? ever?)
 - Relatively limited choices for parallel file systems
 - PVFS
 - GPFS (IBM customers only?)

Motivation (con't)

- Wanted to look at clustered Itanium performance WRT a variety of file systems:
 - ext2 on local disk
 - NFS
 - PVFS

Systems Involved

- SGI 750 Itanium Cluster (ia64.osc.edu)
- SGI Origin 2000 Mass Storage Server (mss.osc.edu)
- Parallel File System Cluster

SGI 750 Itanium Cluster

- 1 Front end node
 - 2 Itanium 733MHz processors
 - 4 GB RAM
 - 350 GB of SCSI disks
 - NFS server for compute nodes' root FS
- 72 Compute nodes, each with
 - 2 Itanium 733MHz processors
 - 4 GB RAM
 - 18 GB local SCSI disk (~5 GB in /tmp)
- Networks
 - Myrinet 2000 for MPI
 - Gigabit Ethernet for parallel I/O and interconnect research
 - 100Mbit Ethernet for NFS and administration

Mass Storage Server

- SGI Origin 2000
 - 8 processors
 - 4 GB RAM
 - Multiple Gigabit Ethernet and HiPPI network interfaces
- 1 TB of Fibre Channel RAID arrays
- IBM 3494 tape robot
 - 6 cabinets, ~6000 tapes
 - 4 tape drives
- DMF/TMF for hierarchical stroage management
- NFS server for users' home directories to all OSC HP
 - Cray SV1ex (16 processors)
 - SGI Origin 2000 (32 processors)
 - Itanium cluster (144[+2] processors)
 - Athlon cluster (128[+4] processors)
 - 4 Sun 6800s (72 processors)

Parallel File System Cluster

- 16 I/O nodes, each with
 - 2 Pentium III 933MHz CPUs
 - 1 GB RAM
 - 3ware 7810 ATA RAID controller
 - 8 80-GB ATA disks in RAID-5 (~520 GB usable)
 - Gigabit Ethernet and 100Mbit Ethernet
- PVFS software from Clemson Univ. and Argonne National Lab
 - Equivalent of RAID-0 across I/O nodes
 - 7.83 TB usable space, 2 GB/s max. I/O bandwidth
 - Large block size -- 64kB default, configurable at file creation time
 - Two interfaces for users
 - Linux kernel driver and user-space daemon for POSIX-style semantics (ls, cp, etc.)
 - ROMIO driver for high-performance MPI-IO

Network Infrastructure

- Extreme Networks Black Diamond 6816 Gigabit Ethernet switch
 - 10 12-port Gigabit Ethernet line cards
 - 4 8-port Gigabit Ethernet line cards
 - 2 48-port 100Mbit Ethernet cards

Benchmarks

- bonnie
- ROMIO perf
- NAS btio
- ASCI Flash I/O
- 2D Laplace Solver

bonnie

- Widely used benchmark for performance of UNIX-style file systems
- Has some drawbacks on large, modern systems
 - Uses a C int for file offsets -- max file size of 2 GB on systems where int is 32 bits (including Linux/ia64)
 - Uses an 8 kB buffer for doing block reads and writes -- massive overhead for file systems with block sizes larger than 8 kB such as PVFS
- OSC-developed variant called bigbonnie
 - Uses a C long long for file offsets
 - Large File Summit #defines to deal with > 2 GB files on 32-bit platforms
 - 64 kB buffer for block reads and writes
- Test against three file systems:
 - /tmp (local SCSI disk)
 - /home (NFS over 100Mbit Ethernet to Gigabit Ethernet on mss)
 - /pvfs (PVFS over Gigabit Ethernet to I/O nodes)

bonnie Results

• Stock bonnie:

	-	Sequential Output				Sequential Input				Rando	>m−−−−		
		-Per (Char-	Bloo	ck	-Rewr	ite	-Per (Char-	Bloo	ck	See}	(S
Filesys	MB	K/sec	%CPU	K/sec	%CPU	K/sec	%CPU	K/sec	%CPU	K/sec	%CPU	/sec	%CPU
/tmp	2000	6099	99.2	262477	99.9	327502	99.9	3091	99.9	552000	99.9	90181.5	193.7
/home	2000	147	3.7	1562	2.3	859	1.7	1909	62.7	542824	99.9	805.5	3.0
/pvfs	2000	3909	63.5	199	1.1	201	2.4	2816	92.9	6614	36.3	227.2	12.1

• bigbonnie:

		Seq	uential Out	put	Sequenti	Random	
		-Per Char-	Block	-Rewrite	-Per Char-	Block	Seeks
Filesys	MB	MB/s %CPU	MB/s %CPU	MB/s %CPU	MB/s %CPU	MB/s %CPU	/sec %CPU
/tmp	4096	5.9 99.6	24.6 10.1	17.2 7.1	3.9 96.6	34.2 9.7	452.9 6.8
/home	8192	0.1 3.2	1.5 2.0	0.8 1.4	1.7 42.3	3.0 1.8	74.6 3.5
/pvfs	8192	3.8 63.3	11.0 7.3	16.0 25.7	3.4 91.2	32.8 25.6	583.3 30.1

Giving Up on NFS and Local Disk

- The compute nodes don't have enough local space to be interesting.
 - Fast but relatively small -- only ~5 GB in /tmp, not much bigger than memory
 - Not shared between nodes
 - PVFS is about as fast as local disk for large read/write buffer sizes, and is shared
- NFS over 100Mbit Ethernet to mss has mediocre performance.
 - ~1.5 MB/s for writes, ~3 MB/s for reads
 - Possibly skirting the edges of IRIX NFS server scalability (currently ~160 clients)?
 - NFS over Gigabit Ethernet using jumbo frames could improve this, but would disrupt some of the other research efforts on the Gigabit network such as EMP (Ethernet Message Passing)
- All further tests, all of which use MPI-IO, are done only to /pvfs.

ROMIO perf

- ROMIO is the reference implementation of MPI-IO from Argonne
 National Lab
- It includes an example called perf which measures MPI-IO performance in four simple cases:
 - MPI_File_write()
 - MPI_File_read()
 - MPI_File_write() followed by MPI_File_sync()
 - MPI_File_sync() followed by MPI_File_read()
- This gives an approximate upper bound on the performance that can be sustained to the file system (in this case PVFS) with an MPI-IO application.
- Data array size is 4 MB per process by default; OSC's tests varied this from 2 MB to 1 GB.

ROMIO perf -- Read Performance

Number of MPI Processes

ROMIO perf -- Write Performance w/ Sync

ROMIO perf -- Write Performance w/o Sync

NAS btio

- bt is one of the original NAS Parallel Benchmarks
 - bt == "block tridiagonal"
 - Simulates behavior of many CFD codes based on implicit numerical schemes
- btio adds parallel I/O using MPI-IO
 - Periodic checkpointing of solution values
 - Two versions
 - "simple" -- Several calls to MPI_File_write_at() per checkpoint, no use of MPI derived data types
 - "full" -- One call to MPI_File_write_at() per checkpoint, with an MPI derived data type used to organize the data
 - Three configurations
 - Class A -- 62³ volume
 - Class B -- 102³ volume
 - Class C -- 162³ volume, would not run due to a bug in the version of ROMIO included in the current MPICH/ch_gm from Myricom

NAS btio "full" Performance

ASCI Flash I/O

- ASCI Flash is an application used to simulate astrophysical thermonuclear flashes.
 - Developed at University of Chicago
 - Used on several on the USDOE ASCI systems
- Uses the parallel interface to HDF5 over MPI-IO.
 - Checkpoint files
 - Cell- and corner-based plot files
 - Significant amount of overhead involved in data type processing at HDF5 level
- I/O portion of the code has been separated out into the Flash
 I/O benchmark.

ASCI Flash I/O Performance

ASCI Flash I/O Comparison with Other Sites

Site	System	File System	Max Checkpoint Performance
LLNL	ASCI Blue Pacific	GPFS	21.3 MB/s @ 64 procs
ANL	Chiba City	PVFS	57.4 MB/s @ 256 procs
OSC	SGI Itanium Cluster	PVFS	106.4 MB/s @ 80 procs
LLNL	Frost	GPFS	212.0 MB/s @ 768 procs

2D Laplace Solver

- The STS group at OSC uses a code that solves Laplace's equation in 2D to demonstrate a variety of programming techniques.
 - Vectorization
 - OpenMP
 - MPI
 - Hybrid MPI/OpenMP
- The MPI version of this code was adapted to checkpoint itself using MPI-IO
 - Sets several file hints, including FS block size
 - Uses MPI_File_write_all() to do writes
 - Tried both with and without collective buffer
 - Buffer size gets smaller as process count increases

2D Laplace Solver Performance

Conclusions

- PVFS on Itanium is a very good performer as a parallel file system for storing temporary files
 - ~1.6 GB/s read, ~1.4 GB/s write peak for parallel
 - 100-400 MB/s sustained write performance on real world parallel codes
 - About as fast as a single local disk for serial applications
- However, PVFS is not necessarily a good general purpose FS
 - Metadata operations (eg. ls, df) very slow
 - RAID-0 like behavior makes FS somewhat fragile

Future Directions

- A couple more benchmarks
 - Effective I/O bandwidth (b_eff_io)
 - LLNL Scalable I/O Project's ior-mpiio
- Connect PVFS to Athlon cluster
- PVFS drivers or proxy for non-Linux systems?
- PVFS v2 testing
 - Native GM and VIA transports as well as TCP/IP
 - Better metadata handling
 - Mirroring at FS or file level

