
1

SV1ex Memory Upgrade Gives Greatest Boost to User Performance

Thomas J. Baring
Arctic Region Supercomputing Center

University of Alaska Fairbanks

ABSTRACT: CPU and memory upgrades to the Cray SV1 at ARSC were spaced about eight
months apart. In all stages of this upgrade, performance data were collected on all user jobs
using hpmflop, and controlled tests were made on four particular user codes. Analysis shows
that the memory, rather than the CPU, upgrade was of greatest overall benefit to users. Codes
with good inherent cache efficiency and reliance on scalar processing got speedup under the
CPU upgrade and those with a high degree of vectorization obtained the most speedup under
the memory upgrade. This follows from the observation that machine balance was improved
for scalar-only codes by the CPU upgrade and for vector codes by the memory upgrade.

Introduction

ARSC's two step upgrade of its Cray SV1 to SV1ex
provided an unusual opportunity to assess the performance
impact of CPU and memory enhancements individually.
This study uses two different types of data collected on the
SV1 iterations, the SV1, SV1e, and SV1ex.

First, passive monitoring of all actual user jobs was
done, and from this data, an attempt made to track both
system-wide and individual code performance. There is
admittedly insufficient data in these records to guarantee
that each individual code tracked was compiled and run in a
consistent manner across the two upgrades, but after some
cleaning of the data, it is clear that the memory upgrade was
of greater benefit to more individual codes and the overall
user base than the CPU upgrade.

Second, to help understand the reasons behind the
observations described above, four user codes with fixed
input were obtained, and run as benchmarks across the three
SV1 iterations. These data allow for controlled analysis
which shows that a code's inherent degree of vectorization
remains the key to its performance on the SV1 series, and
that the upgrade which helped well-vectorized codes was
the memory upgrade. Codes which use the SV1 cache
effectively gained the most in the CPU upgrade, but unless
they were also well vectorized, they remained
underachievers.

The broader conclusions of this study are that memory
bandwidth remains the key to vector performance and that,
although some codes were unaided by the first, CPU
upgrade, the combination of CPU and memory upgrades
improved the performance of all user codes.

Background

ARSC
The Arctic Region Supercomputing Center (ARSC),

located on the University of Alaska Fairbanks campus,
operates a Cray SV1ex, Cray T3E, and IBM SP. ARSC's
vector offerings prior to the SV1 series were a Cray J90 and
Cray Y-MP M98.

SV1ex Upgrade in Stages
The basic features of the ARSC SV1 system remained

unchanged in these upgrades: it is a 32-CPU, 4GW, shared-
memory parallel-vector processor. Each SV1 processor has
both scalar and vector functional units, with maximum
scalar speed 1/20th of vector, two vector pipes, and a 256KB
vector/scalar/instruction cache. The vector length is 64 8-
byte words [1].

ARSC was the first SV1 user site, in both cases, to
upgrade CPU and memory. The following table, in which
"Peak speed" denotes the theoretical peak single-CPU
performance, and "Mem. Bandwidth" denotes the actual
peak CPU to memory bandwidth as measured on a single
CPU by the STREAM benchmark [5], summarizes the
upgrades:

System Install or
Upgrade
Date

Clock
speed
MHz

Peak
speed
mflop/s

Mem.
Bandwidth
GB/s

SV1 Sep 30,
2000

300 1200 2.5

SV1e Apr 11,
2001

500 2000 2.5

SV1ex Dec 12,
2001

500 2000 3.4

Table 1. SV1-SV1ex Upgrade

2

System-Wide User Speedup From Upgrades

Enabling users to accomplish more work in less time is
the purpose of an upgrade. To establish whether this goal
was achieved, ARSC configured the SV1 to do passive
performance monitoring of all user jobs, the results of which
are readily available via the UNICOS "hpmflop" command.
A two-part analysis of the hpmflop data across both SV1
upgrades shows that ARSC users benefited most from the
faster memory. The first analysis includes runs of all user
codes, even those which, for various reasons, were only run
on one of the three SV1 iterations. The second analysis
makes cross-platform comparisons of those individual codes
which were run on two or all three of the SV1, SV1e, and
SV1ex.

Raw hpmflop data
The raw data available through hpmflop includes an

entry for every job run on the system which a) terminates
normally, and b) accumulates more than five CPU-Seconds.
The following four items are reported:
• user name,
• average MFLOPS for the entire run,
• file and path of executable (as specified by the user),

and
• total CPU-Time.
The raw data set includes all ARSC SV1 and SV1e jobs,
and all SV1ex jobs through April 16, 2002.

Data Preparation
This study is concerned with the performance of

significant user work. Thus, all jobs run by ARSC staff
members and those which accumulated less than 180 CPU-
Seconds were immediately removed from the data set, as
were runs of utilities, such as "ssh" and "ftp."

The data is organized by treating the combination of
"user name" and "file and path of executable" as a single
user "code." For instance, "smith:./ver2.3/vel.x",
would be one code. Every occurrence of the "code" in the
hpmflop output is considered as one run, and runs on the
three SV1 versions are pooled separately for plotting and
statistical analysis. In total, 270 such "codes" were found.

Actual statistics extracted for one code are shown in
table 2 as an example . The name,
"smith:./ver2.3/vel.x" is fictitious, but we can
pretend that these data were from runs by user "smith" of
the executable program, "./ver2.3/vel.x".

SV1 SV1e SV1ex

N Runs 102 608 154
cpu-sec tot. 86790.2 68657 58806.7
mflops wavg 217.23 210.044 293.121
mflops avg 216.588 208.921 283.403
mflops sdev 28.0825 29.9498 42.9259

Table 2. Statistics for one actual, sample code

The quantity "mflops wavg" is the average mflops,
weighted by run time, and is the "average" used throughout
the study. Perl scripts were used to preprocess the 400,000
plus lines of hpmflop output, and the IgorPro data analysis
application by Wavemetrics, Inc. was used for further data
cleaning, computation of statistics, and plotting.

Overall Performance Improvements
The sample code of table 2 is, unfortunately, only one

of eight codes which a user ran on all three SV1s, and thus,
across both upgrades. Including those eight, about 20 codes
were run across the SV1-SV1e upgrade and another 20 were
run across the SV1e-SV1ex upgrade. The remaining 232
codes were run on one platform only. The graph in figure 1
includes all codes, regardless of overlap.

This "cumulative" plot was produced as follows. The
total CPU Time accumulated by all codes on each platform
was determined, and then the percent contribution to this
total made by each job computed. The codes were sorted by
MFLOPS and plotted, with each code's percent of total CPU
time added to the cumulative sum of all codes with lower
MFLOPS. Thus, looking at the red, SV1ex trace, we know
that 100% of all user codes on the SV1ex ran at or below
760 MFLOPS. Similarly, 100% of all codes on the SV1e ran
at or below 500 MFLOPS, and on the SV1, they ran at or
below about 450.

100

80

60

40

20

0

C
um

ul
at

iv
e

P
er

ce
nt

 C
P

U
 T

im
e

8006004002000
MFLOPS

 SV1
 SV1e
 SV1ex

Figure 1: Cumulative Plot of MFLOPS

The importance of the memory upgrade to users is clear
from this plot. On both the SV1 and SV1e, nearly 80% of all
user codes ran at below 225 MFLOPS while on the SV1ex,
only 20% run below that rate.

Note the gap between the SV1 and SV1e curves in the
MFLOPS region below about 160 MFLOPS. Codes in this
regions were helped most by the CPU upgrade while the
better performing codes were helped more by the memory
upgrade. This particular observation will recur throughout
this study and, as shown later, can be explained quite
simply: scalar-dominated codes were helped by the CPU
upgrade, well-vectorized codes were helped by the memory
upgrade.

3

The combined effect of the CPU and memory upgrades
was a fairly uniform improvement across the entire range of
MFLOPS values. Neither upgrade in isolation would have
satisfied everyone.

Analysis of Individual Codes
For the most precise analysis of user code speedup

across the two upgrades, each user would have, ideally, re-
run each of his or her codes with identical input parameters
and files and sent us the hpm output. This didn't happen,
but with additional data cleaning and acceptance of some
inaccuracies in the cross-platform comparisons, we can use
the hpmflop data to estimate the gains for many of the
individual codes. The method of cleaning the data is
discretionary and a more algorithmic approach might be
implemented for future studies. Some interesting patterns
appear, however, and are worth mentioning.

Figures 2 and 3 show all runs of one particular user
code (randomly numbered "162") on the SV1e and SV1ex.
This code was not run on the SV1. In these graphs, using
the right axis, the circular symbols mark each run as CPU
Seconds versus MFLOPS and the single solid square marks
the average CPU-Seconds of all runs against the weighted
average of all runs. The histogram bars, using the left axis,
mark the frequency of runs within each MFLOPS bin. Is it
reasonable to conclude that this particular code did speed up
from 283 to 313 MFLOPS, as shown in these graphs, as a
result of the memory upgrade? Or is this an apparent speed
up, caused by another factor?

120

100

80

60

40

20

0

H
is

to
gr

am
 (

Jo
bs

 p
er

 B
in

)

6005004003002001000
MFLOPS

5000

4000

3000

2000

1000

0

C
P

U
 S

econds

Figure 2: SV1e runs of user code "162"

30

25

20

15

10

5

0

H
is

to
gr

am
 (

Jo
bs

 p
er

 B
in

)

6005004003002001000
MFLOPS

5000

4000

3000

2000

1000

0

C
P

U
 S

econds

Figure 3: SV1ex runs of user code "162"

Ultimately, nine user codes were eliminated from the
comparison study by visual inspection of graphs like these.
The codes with the 50 largest standard deviation and/or
skewness were plotted and the decision of which to reject
made by inspection. In the process, codes "162" (above)
and "155" (below), for example, were retained, as the
computed average values seemed to adequately represent
the overall performance of the codes, while "131" (below)
was rejected.

The runs of "131" plotted in figure 4 are clearly
bimodal, and the "average" is not representative of either
mode. Several hypothetical explanations are available for
the two modes. The user may have:

• switched to a different code of the same name,
• switched to a fundamentally different data set,
• started running on some N rather than M

multitasked CPUs, or
• done something else.

This is an extreme example, but several codes had histories
like this, and were simply thrown out.

The other interesting feature of "131," which also
appears in both runs of "162" are the two gently sloping
curves defined by subsets of the runs. Multiplying the CPU-
Seconds and MFLOPS for a single job yields the total
number of floating point operations, and this product is very
similar for all jobs in each trend. This suggests that each
"curve" is produced by a suite of nearly identical jobs (same
executable, same size data sets) which ran at slightly
different rates, due, for instance, to system load during the
run. The observed inverse relationship between MFLOPS
and CPU-Seconds is expected, of course, if the total number
of operations is constant. The weighted average MFLOPS
values for most codes showing such "suites" of runs seem to
adequately represent the actual ranges of performance, and
were not eliminated from the study.

An interesting pair of groups is shown by code "155"
which made over 1,200 short, slow runs, and a small
number of long, faster runs. These were, perhaps, testing
and production phases of the user's project. The weighted

4

average MFLOPS value seems to catch the true
performance of this code, so it was retained.

20

15

10

5

0

H
is

to
gr

am
 (

Jo
bs

 p
er

 B
in

)

6005004003002001000
MFLOPS

20x10
3

15

10

5

0

C
P

U
 S

econds

Figure 4: SV1e runs of user code "131"

700

600

500

400

300

200

100

0

H
is

to
gr

am
 (

Jo
bs

 p
er

 B
in

)

6005004003002001000
MFLOPS

120x10
3

100

80

60

40

20

0

C
P

U
 S

econds

Figure 5: SV1ex runs of user code "155"

Cross-Platform Comparisons by Code
Approximately 260 codes remained in the hpmflop data

set after the process of "cleaning," and, as mentioned earlier,
20 of those codes were run on both the SV1 and SV1e.
Each of these codes appears as a separate point in figure 6,
with improvement in performance plotted against the
(weighted) average MFLOPS.

2.0

1.8

1.6

1.4

1.2

1.0

0.8

S
V

1
to

 S
V

1e
: M

F
LO

P
S

 Im
pr

ov
em

en
t

8006004002000
MFLOPS (on SV1e)

Figure 6: MFLOPS Improvement of Individual User Codes,
SV1 to SV1e

This comparison again suggests that the CPU Upgrade
helped the slower, non-vector codes. In particular, note the
apparent inverse relationship between speedup and
MFLOPS: slower, scalar codes did better. The slow-down
of some codes ("improvements" below 1.0) can't be
explained by the CPU upgrade, and must be due to factors
not tracked by hpmflop. It reminds us of the inaccuracies
inherent in this portion of the study.

Similarly, the 20 codes which were run on both the
SV1e and SV1ex are plotted in figure 7, at the same scale.

2.0

1.8

1.6

1.4

1.2

1.0

0.8

S
V

1e
 to

 S
V

1e
x:

 M
F

LO
P

S
 Im

pr
ov

em
en

t

8006004002000
MFLOPS (on SV1ex)

Figure 7: MFLOPS Improvement of Individual User Codes,
SV1e to SV1ex

The average speedup for these sets of codes from the
CPU upgrade was 1.24 and from the memory upgrade, 1.37.
Visually, the center of mass of points in the SV1e to SVex
graph (figure 7) is higher and to the right, and thus, once
again, higher MFLOPS codes were generally helped more
by the memory upgrade. The comparison between figures 6
and 7 is not completely reliable because, except for the eight

5

codes which overlapped both upgrades, the codes plotted are
different.

The concluding graph, below, shows the eight user
codes which were run on the SV1, SV1e, and SV1ex and
thus, for which improvement due to both upgrades could be
compared directly . The x-axis gives improvement from the
CPU upgrade and the y-axis, the improvement from the
memory upgrade. The two axes are at the same scale.

2.0

1.8

1.6

1.4

1.2

1.0

0.8

S
V

1e
 to

 S
V

1e
x:

 M
F

LO
P

S
 Im

pr
ov

em
en

t

2.01.81.61.41.21.00.8
SV1 to SV1e: MFLOPS Improvement

Figure 8: MFLOPS Improvement of Individual User Codes,
Both Upgrades

This plot reiterates both major conclusions of this
study.

First, the inverse relationship suggested by the
downward sloping trend shows that the attributes of an
individual code which made it respond well to one upgrade
hindered it in the other. These attributes are the dominance
of scalar versus vector processing which are, of course,
inversely related.

Second, the codes' center of mass is high on the
memory upgrade (y-) axis but low on the CPU upgrade (x-)
axis. For these eight codes, the average MFLOPS
improvement from the CPU upgrade was 1.05 while from
the memory upgrade it was 1.45. Again, the memory
upgrade gave users the bigger boost.

Speedup of Benchmark User Codes

Performance Metrics for SV1 Codes
To better understand the effects described above, four

user codes were evaluated in more detail using three
performance metrics.

An executable program is a fixed implementation of an
algorithm, under the treatment of a compiler, which, when
run on similar architectures against similar data sets will
retain some relatively constant performance attributes. In
comparing runs of the same program on the SV1, SV1e, and
SV1ex, the following three inherent attributes are of
particular interests:

• Degree of Vectorization (or "Vectorization")
• Computational Intensity
• Cache Efficiency

These attributes can be treated as metrics, or ways of
"measuring" codes, to aid in understanding their
performance or even predicting how they might perform on
future, similar architectures.

On a Cray vector system, values of these metrics may
be derived from data collected by the hardware performance
monitor (hpm). HPM is a tool for accessing special
hardware counters. It averages results across the execution
of the entire program, and running it has no impact on the
performance of the code [3]. For this study, the following
fields were used from hpm groups 0 and 3:

hpm group 0:
Million inst/sec (MIPS)
Cache hits/sec
CPU memory references/sec
Floating ops/CPU second

hpm group 3:
Percent of all instructions by type
(000-017)jump/special
(020-077)scalar functional unit
(100-137)scalar memory
(140-157,175)vector integer/logical
(160-174)vector floating point
(176-177)vector load and store

The degree of vectorization metric can be estimated as
the hpm fields "Floating ops/CPU second" divided by
"Million inst/sec (MIPS)" (or MFLOPS/MIPS) [3]. This
report uses the MFLOPS/MIPS measure throughout because
only hpm group 0 results were collected for all programs on
all platforms. Where available, however, these results were
tested against the more precise group 3 vectorization
statistics and no significant qualitative differences were
found. A high value indicates that the executable is making
good use of the SV1's vector functional unit.

Computational intensity can be considered the amount
of work done per memory reference, and is computed as
"MFLOPS" divided by "M memory references per sec." A
high value indicates that the code is performing several
computations for each relatively expensive memory
reference. Data fetched from memory can be cached in
registers or in the SV1 cache for reuse.

Cache efficiency is computed as "cache hits per sec"
divided by "CPU. Mem. References/sec", and is the fraction
of all memory references which were satisfied from cache.

Selected User Codes
The four codes used as benchmarks were run against

consistent data sets, in the same way, on the three SV1
architectures.

6

GAMESS
GAMESS is a well-known quantum chemistry package,

and on the ARSC SV1 is run on one CPU. The run-time
characteristics of GAMESS changes radically depending on
the input problem and while it is most frequently run on
MPP platforms, for the problems run on the SV1, it requires
large memory and does not parallelize. The GAMESS data
for this report was supplied by an ARSC user, all runs were
on 1-CPU.

FLAPW
This is a well-vectorized quantum physics code. Due to

a problem which took several months to understand,
performance data for the original SV1 is not available for 1-
CPU runs, and thus, data from 2-CPU runs is used
consistently for this study. This is unfortunate, as this is by
far the highest performing code in the suite, achieving
sustained performance of 1/3rd to 2/5ths of peak theoretical
performance when run on a single CPU. It doesn't scale
well, and performance on 2 or more CPUs is not as
exhilarating.

Tsunami
This is a finite difference code, written with traditional

Fortran 77 style DO loops, and achieves reasonable vector
performance. It solves the shallow-water wave equations
for nested grids of increasing resolution.

POLAIR
This is a coupled ocean/land/atmosphere/ice model, and

is unique in having been written using Fortran 90 constructs,
such as WHERE statements and array syntax to the
elimination of DO loops.

Measured Performance Under Metrics
Each of the values presented in the following graphs is

the average obtained from between 2 and 6 runs, with an
effort to run on mainly idle machines. An exception are the
runs of GAMESS for which only one run per data point was
made. To simplify this analysis, data for multi-processor
runs is not considered (with the exception of the FLAPW
code, for which data from autotasked, 2-CPU runs, is used).

As noted previously, the metrics are characteristic of
the codes themselves, and the values of the metrics are
nearly identical on the three different architectures. This is
supported by a similar study performed last year [2] in
which autotasked runs on 1, 2, 4, and 8 processors across
two different compiler versions on the SV1 and SV1e were
combined and, again, uniform values for each metric for
each code observed. Values of the metrics are given below
(Table 3), preceded by plots of the raw hpm values used in
their computation.

Degree of Vectorization Metric
Laying aside questions of algorithm choice and

effective implementation, the MFLOPS axis in figure 9
shows that Tsunami and FLAPW (even multitasked) rank
highest in this suite. The axis maximum of 350 MFLOPS is

17.5% of the SV1e and SV1ex peak and quite respectable
for sustained performance.

Vectorization is computed as MFLOPS/MIPS, the ratio
of the y-axis to x-axis values in this plot. GAMESS is at the
high end of the MIPS axis and low end of the MFLOPS
axis, and thus is poorly vectorized and demands far more
instructions per result.

In figures 9-11, the symbols, "1", "E", and "X" mark
data collected on the SV1, SV1e, and SV1ex, respectively.

350

300

250

200

150

100

50

0

M
FL

O
P

S

140120100806040200
MIPS

1
E

X

1

E X

1E

X

1

E
X

T POLAIR
T GAMESS
T Tsunami
T FLAPW

Figure 9: Degree of Vectorization

Computational Intensity Metric
FLAPW shows its memory efficiency in figure 10.

Each transfer between CPU and memory performed by
FLAPW yields about twice as many "results" as Tsunami
and six times as many as POLAIR.

350

300

250

200

150

100

50

0

M
FL

O
P

S

350300250200150100500
M MemRefs / Sec

1
E

X

1

EX

1 E

X

1

E
X T POLAIR

T GAMESS
T Tsunami
T FLAPW

Figure 10: Computational Intensity

Cache Efficiency Metric
The best and worst performers (FLAPW and

GAMESS) are strikingly similar, to judge by figure 11. On

7

the SV1e and SV1ex, they have the highest cache hit rates
and lowest memory reference rates. POLAIR is the
opposite.

100

80

60

40

20

M
 C

ac
he

 H
its

 /
S

ec

350300250200150100500
M MemRefs / Sec

1
E

X
1

EX

1
E

X
1

EX

T POLAIR
T GAMESS
T Tsunami
T FLAPW

Figure 11: Cache Efficiency

Computed Values of Metrics
 For each metric, larger values are better. Averaging

across the three platforms for each code reveals that none of
the codes ranks highest or lowest in every metric (table 3).
To determine their relative importance, we must consider
speedup.

POLAIR GAMESS Tsunami FLAPW

Vect. 3.99 0.61 7.00 3.03
Comp.Ints. 0.58 0.83 1.41 2.96
Cache Eff. 0.15 0.73 0.33 0.78

Table 3. Values of Metrics averaged across SV1,
 SV1e, and SV1ex

Speedup
Computations of speedup in this study are based on

CPU-Time:

SV1e Speedup = SV1 CPU-Time /SV1e CPU-Time
SV1ex Speedup = SV1e CPU-Time/SV1ex CPU-Time

In the following two figures, speedup is plotted against
one of the metrics, there are two data points for each of the
four user codes: one point is the speedup obtained in the
CPU upgrade (marked with the symbol, "E") and the second
is the speedup from the memory upgrade ("X").

Cache efficiency is well correlated to speedup from the
CPU upgrade (figure 12). Ignoring the "X's" in this graph,
the SV1e values ("E's") of GAMESS and FLAPW are
clearly high and to the right of Tsunami and POLAIR.

1.6

1.5

1.4

1.3

1.2

1.1

1.0

S
pe

ed
up

 (
C

P
U

 T
im

e)

0.80.60.40.20.0
Cache Efficiency

EX

E

X

E

X

E

X

E SV1 to SV1e
X SV1e to SV1exT POLAIR

T GAMESS
T Tsunami
T FLAPW

Figure 12: Speedup versus cache efficiency

These pairings based on cache efficiency were noted
earlier in figure 11. Realizing that the CPU upgrade
increased the cache to CPU bandwidth by 66% (along with
the clock speed increase of 66%, table 1), the observed
speedups are reasonable.

The SV1ex speedups ("X's") don't show a similar
grouping on this plot. Cache efficiency wasn't a factor in
gaining speedup from the memory upgrade.

The relationships between speedup and vectorization
(figure 13) are quite revealing. First, consider the CPU
upgrade (the "E" symbols) only. SV1e speedup increases
dramatically from right to left, as the degree of vectorization
decreases (and thus, as the scalar percentage of a code
increases).

1.6

1.5

1.4

1.3

1.2

1.1

1.0

S
pe

ed
up

 (
in

 C
P

U
 T

im
e)

86420
Vectorization (MFLOPS / M MemRefs Per Sec)

EX

E

X

E

X

E

X

E SV1 to SV1e
X SV1e to SV1ex

T POLAIR
T GAMESS
T Tsunami
T FLAPW

Figure 13: Speedup versus degree of vectorization

To help understand this effect, consider an analog of the
computational intensity metric for codes, the "machine
balance" metric for computer systems. "Machine Balance"

8

is the peak theoretical performance of a machine divided by
the peak system memory to CPU bandwidth observed [4].
A value of 1.0 is best, and suggests the machine is
"balanced"; values greater than 1.0 suggest that memory is
too slow for the CPUs; values less than 1.0, that the CPUs
are too slow. Since this study is concerned with single
CPU performance, and the test codes were generally run on
one CPU, balance values (table 4) for a single CPU are
relevant. (This single-CPU balance is different from
"machine balance," as normally defined [4].)

The column, "Scalar-only Balance," gives artificial
values that would exist if the SV1 CPU had only a scalar,
and no vector, unit, or, put another way, if a given code had
no vector component or were compiled with vectorization
off.

A shift in balance closer to unity implies an
improvement. Thus, it follows from the values in table 4
that the CPU upgrade was an improvement for scalar codes
and the memory upgrade was an improvement for vector
codes.

Balance (Scalar-only
Balance)

SV1 3.8 (0.19)
SV1e 6.4 (0.32)
SV1ex 4.7 (0.24)
Table 4. CPU versus Memory Balance for one CPU

The observation from the benchmarking tests (figure
13) that SV1e speedup increases with scalar percentage is
reasonable considering this table. On the original SV1, the
bottleneck for "scalar-only" codes was the CPU. The SV1e
reduced this bottleneck by moving the scalar-only balance
from .19 to .32, and could thus have been expected to
improve the performance of scalar codes.

Similarly, consider the effect of the memory upgrade as
shown in figure 13 (the "X" symbols). SV1ex speedup
increases with better levels of vectorization. This, again, is
as expected since (from the "Balance" column of table 4)
the bottleneck for a vector code is the memory subsystem.
The SV1ex upgrade reduced the memory bottleneck by
moving the balance from 6.4 to 4.7. A memory upgrade
could thus be expected to improve the performance of
vector codes.

The observation made earlier that the CPU upgrade
aided the slower codes in the ARSC user base (figure 1) can
similarly be explained by noting that the slower codes are
likely scalar-dominated. The memory upgrade aided the
faster codes in the user base because they are, by definition,
vectorized. Given that most of the codes running on the
system are vectorized, it's not surprising that the memory
upgrade gave the bigger overall boost to the user base.

References
[1]: Maynard Brandt, Jeff Brooks, Margaret Cahir, Tom Hewitt, Enrique

Lopez-Pineda, Dick Sandness.. "The Benchmarker’s Guide for CRAY
SV1 Systems", Cray Inc., July 20, 2000

[2]: Thomas Baring, Jeff McAllister, "SV1e Performance of User Codes,"
CUG 2001 Proceedings, May 2001.

[3]: "Optimizing Application Code on UNICOS Systems”, Cray online
Software Publications, 004-2192-003

[4]: John D. McCalpin. "Memory Bandwidth and Machine Balance in
Current High Performance Computers", IEEE Technical Committee on
Computer Architecture newsletter, December 1995.

[5]: "STREAM: Sustainable Memory Bandwidth in High Performance
Computers", Web site URL: "http://www.cs.virginia.edu/stream/",
Maintained by John D. McCalpin, Department of Computer Science
School of Engineering and Applied Science University of Virginia,
Charlottesville, Virginia

Acknowledgements

My thanks to the ARSC users who were willing to
share their codes and results with me, and to Jeff McAllister
and Guy Robinson of ARSC for ideas and feedback.

Author

Tom Baring is a User Consultant with six years of
experience at the Arctic Region Supercomputing Center.
He may be reached at: baring@arsc.edu.

