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ABSTRACT: The flow simulation program URANUS has been developed to calculate non-
equilibrium flows around space vehicles reentering the earth’s atmosphere. The program
simulates not only the supersonic flow but also the chemical reactions occuring as they have a
non-negligible influence on the flow. As a result of the calculation the heat flow and the heat
load at the surface is of main interest. During  the last years a parallel multiblock version of
the simulation program has been developed as sequential systems cannot feed the programs
needs in computing power and memory. The development was done on a Cray T3E using
Fortran90 and MPI for Message Passing. Therefore, the resulting program is portable and was
also tested on a wide range of high performance architectures like Hitachi SR8000 and NEC-
SX5.

1. Introduction

Calculating flows around space vehicles during the
reentry phase of their mission is a challenging task. Besides
the normal flow one has to consider the occurring chemical
reactions as they have a significant influence on the flow.
The reason for these chemical reactions is the high
temperature of the gas flow during the reentry, while the
space vehicle is slowed down by the friction of the air. At
these temperatures the air’s components mainly nitrogen
and oxygen react with each other.

Modern space vehicles have complex geometries. To
calculate flows around such a geometry, there exist several
approaches: unstructured meshes, block structured meshes
and other technologies like hybrid or overset meshes.
Unstructured meshes can be generated automatically, mesh
generation is much easier than generating a multiblock
mesh. But the calculation of a flow using them costs a lot of
computational power as indirect memory access methods
have to be used. Therefore, efficient cache usage and
vectorization is limited. As the development of the memory
speed cannot keep track with the increase in processor
performance this will be worse in the future. The second
method is using structured meshes, but allowing several
blocks of them to be assembled in an unstructured way. So,
it is possible to mesh complex geometries. The calculation
of such structured topologies profits from cache and vector
technology. A good performance is much easier to obtain
and it is normally higher than with unstructured meshes. But
the mesh generation is a costly task. Sometimes it costs
several weeks of an expert to generate a good so called
multiblock mesh.

An already existing parallel version of the URANUS
[1] flow solver for ideal gases uses structured 3D C-meshes
for its calculation. However, single block c-meshes contain
a singularity in the mesh which is complicated to handle and
which also limits the convergence speed. Moreover, current
topologies like an X-38 (Figure 1) with body flap cannot be
meshed with such a single block c-mesh.

Figure 1.  X-38 Reentry Vehicle

Considering this and the arguments presented above,
we decided for the more natural step using multiblock
meshes for our calculations instead of rewriting the code
completely to handle unstructured meshes.
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2.  URANUS

In the URANUS (Upwind Relaxation Algorithm for
Nonequilibrium Flows of the University of Stuttgart) [5,6]
flow simulation program the unsteady, compressible Navier-
Stokes equations in the integral form are discretized in space
using the cell-centred finite volume approach. The inviscid
fluxes are formulated in the physical coordinate system and
are calculated with Roe/Abgrall`s approximate Riemann
solver. Second order accuracy is achieved by a linear
extrapolation of the characteristic variables from the cell-
centres to the cell faces. TVD limiter functions applied on
forward, backward and central differences for non-
equidistant meshes are used to determine the corresponding
slopes inside the cells, thus characterizing the direction of
information propagation and preventing oscillation at
discontinuities. The viscous fluxes are discretized in the
computational domain using classical central and one-sided
difference formulas of second order accuracy.

Time integration is accomplished by the Euler
backward scheme. The resulting implicit system of
equations is solved iteratively by Newton`s Method, which
theoretically provides the possibility of quadratic
convergence for initial guesses close to the final solution.
The time step is computed locally in each cell from a given
CFL number. To gain full advantage of the behaviour of
Newton`s method, the exact Jacobians of the flux terms and
the source term have to be determined.

The resulting linear system of equations is iteratively
solved by the Jacobi line relaxation method with
subiterations to minimize the inversion error. A simple
preconditioning technique is used to improve the condition
of the linear system and to simplify the LU-decomposition
of the block-tridiagonal matrices to be solved in every line
relaxation step.

The boundary conditions are formulated in a fully
implicit manner to preserve the convergence behavior of
Newton`s method [7].

The usage of the sequential URANUS program on
high-end workstations and on vector computers shows that
the compute time and the memory requirements are too high
to use the program on these platforms without the ability to
use processors in parallel. Especially when changing to the
real gas model or using fine meshes for real world problems.
Therefore, that program version was parallelized in an
earlier effort, because only massively parallel platforms and
modern hybrid parallel computers can fulfil the program’s
needs in memory size and computing power.

We now want to introduce a parallel multiblock
structure into this code. The main focus besides the
multiblock structure itself when doing these enhancements
was the efficiency of the program.

3. Requirements to an Efficient Parallel
Multiblock Solver

To be able to calculate correct solutions on a multiblock
mesh in parallel, a flow solver has to have several additional
features.

Physical Boundaries

In the serial program using c-meshes each of the
different physical boundaries is fixed to a dedicated plane of
the mesh. This means, e.g. that the outflow boundaries are
always fixed to the mesh plane, where the first index
reaches its maximum. In the multiblock case this is not
longer true. Theoretically, each boundary type can appear at
each of the six planes of the 3D mesh. However, usually the
mesh is generated in a way where the most complicated
boundary is fixed to one specific plane of a block. So, the
boundary with the condition of the body wall has only to be
implemented for one index direction. Nevertheless, this
limits the usability of the code, because this does not work
for some special topologies where at least one of the blocks
has to calculate wall boundary conditions at least at two of
its boundaries.

Local Coordinate System

The ability of turning the mesh blocks such that always
the same block surface fits to the body wall requires that
each of the blocks can have its own local coordinate system.
This is necessary anyway as the blocks itself are disposed
unstructured around the geometry. At particular points
where more ore less than four blocks in 2D or eight blocks
in 3D respectively are connected together, the local
coordinate system of at least one of the blocks neighbours
has to be different. This is illustrated in Figure 2.

Figure 2. The different local coordinate systems and
how they occure

Furthermore, in a multiblock mesh each block can have
multiple neighbours on each of its block sides, not only one
as it happens, when you are cutting a C-mesh into parts, or
when using special mesh generators.
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Different Mesh Block Sizes

In a multiblock mesh the arrangement and occurence of
the blocks depends only on the meshed topology and the
decisions of the mesh generartor. This means in general, that
the blocks can be completely different not only in shape but
also in size, where block size is measured in number of
mesh cells per block. There can be orders of magnitude in
block size between the largest and the smallest block.

Additional Requirements

As we are not using our own meshes within this project,
we are depending on meshes of our partners. Moreover, we
wanted to be able to calculate results for as many cases and
with as much project partners as possible. So we were not
interested in limiting ourselves too much in choosing one
special multiblock mesh type. We wanted to keep a high
flexibility of our code. So, using meshes from project
partners should  be as easy as adapting and extending the
input routines.

The program parts for the parallelization the multiblock
structure and the flow simulation core should be separated
as far as possible. This increases maintainability as the
modeling people still can recognize and update their flow
patterns as the parallelization people can enhance the
parallel performance.

4. The Parallel Multiblock Approach

As the flow simulator mentioned is memory and
calculation intensive we aim at using the newest available
hardware platforms. This requires a portable code to be able
to move easily from one platform to another. In the parallel
case this requires the usage of a standard parallel
programming model. In order to be able to run on all
platform types, like MPP’s, SMP’s and the new hybrid
architectures consisting of distributed SMP nodes, we
decided to use MPI[3] as communication library.

Currently, we use a pure distributed memory approach
as this performs also well on today’s SMP machines and on
hybrid architectures. In a future version it would also be
possible to add OpenMP[2] directives to profit in addition
from SMP architectures. A pure SMP approach was not
considered, because this would limit the platforms to be
used. Additionally, the experience of NASA shows that
such an approach on today’s ccNUMA architectures
requires an effort comparable to an implementation with
MPI to achieve a good performance[4].

Data Structures

The new parallel program needs a newly designed data
structure to meet the requirements of  the multiblock
structure. Using Fortran90 we have the whole ability of
dynamic and structured data types. Therefore, it is not

longer necessary to implement a data management which
stores the 3D arrays of all blocks contiguously into a one
dimensional array or  to waste memory by allocating the
same amount of memory for each block calculated on one
processor, like it was usual when using FORTRAN77 [8].

In the new multiblock flow simulation program all
information regarding one block is combined in a new data
type. Each block is a instance of this data type having
exactly the size the block needs. The blocks residing onto
one process are organized in a pointered list of these
instances. So, there is no waste of memory as only the really
required memory is allocated. There is no additional
programming effort in manually handling the memory
layout as the run time system cares for this.  The
information is easily accessible and the data structure itself
is easy to extend to meet future requirements. The data
structure for a block includes the ability to use several
meshes with different resolutions for one block. So the data
structure is already prepared for additional features like
local refinement and multilevel or multigrid technologies.

Domain Decomposition and Communication between the
Blocks

For the parallelization we used the domain
decomposition approach. Each block has a two cell overlap
region at the inner boundaries to maintain the second order
scheme without additional communication. The values of
the overlap region are stored according to the local mesh
values. This means, that they are stored converted to the
local coordinate system of the block, even if the coordinate
system of the block where they are originally located is
different. Consequently, the conversion of the halo cell data
to the particular local coordinate system is done during the
data transfer between the blocks.

This communication between neighbours is necessary
to update the results of the cells in the overlap region.
During the solving step additional communication between
the neighbours is performed to exchange intermediate data.
This ensures a more accurate solution and a better
convergence.

Due to the irregular structure the mesh blocks have
within the meshed topology, the identification number of a
neighbour block cannot be calculated out of the blocks own
number and the block side. Additionally, a block can have
several neighbours at each of its sides as mentioned above.
Accordingly, there is a data structure implemented to store
all the information about the relationship of the block and its
particular neighbours. This information enfold the block
number and the block side the local block is connected to,
the neighbour blocks processor as far as the orientation of
the neighbour block and the part of the local blocks side
which is adjoined to the neighbour.

Each block is treated separately on its processor. There
is no difference in the handling of its neighbour blocks
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independent where they are located. This means, the
communication between two blocks residing on the same
processor is also done using the regular communication
routines of the program. In this case from the processor
point of view the processor is sending a messages to itself.

To be able to hide the communication as good as
possible behind some computation, non-blocking
communication is used. Currently, the blocks on one
processor are handled one after the other also during the
communication. First all blocks for sending, then all blocks
for receiving. An improvement would be possible by letting
the processes wait for messages to receive, not blocks. Then
a received message is passed to the respective block who
probably can do some computational work then.

For the calculation of global values where each block
has a contribution, the results of one processor’s blocks are
calculated locally and then exchanged between the
processors using the collective communication patterns of
the programming model.

A specific data structure also exists for each physical
boundary type of a block, where all the data of one physical
boundary type is specified. It contains the subtype and the
exact position of this physical boundary on the block. Using
this data structure, there is no branching necessary for each
of the six block sides where a physical boundary can reside.
Additionally, all physical boundaries of one type at a block
can be handled efficiently in a loop.

Load Balancing

To obtain good performance on any kind of parallel
computers it is essential to have a good load balance
between the processors allocated to the parallel job. Thus,
we should allocate the same portion of load to each
processor. In our case this means that every processor
should make calculations for more or less the same number
of mesh cells.

Compared to an approach where the blocks which are
too large are cut in the middle as long as there are empty
processors[9], we used a different technique: we also have
to cut all blocks which are too large to fit onto one
processor. But our cutting algorithm first calculates the
number of necessary pieces for each block to be cut into.
This number must only contain powers of two and powers
of three as divider. If the calculated number does not
accomplish this requirement the next appropriate larger
number of pieces doing so is calculated. As the resulting
parts may become to small we allow a slight overload of the
processors to avoid cutting into too much pieces. Then, the
number of cuts necessary in each of the three dimensions is
calculated in a way that the resulting blocks are not
misshapen. This is also the reason for allowing only part
numbers containing powers of two and three, because than
we can guarantee a good shape.

Consider the case if we have to cut a block into
fourteen pieces. Then we have to cut one time in one
dimension, six times in a second and we cannot divide in the
third dimension. If we are dividing the block into 16 parts
instead, we can freely choose how to place the cuts within
the three dimensions.

This strategy has an additional advantage as we are
cutting all the blocks in that way: assume a block being
divided two times in one dimension and its neighbour being
divided four times in the same dimension. Assuming the
same local coordinate system. Two of the three block parts
have to communicate with two neighbour blocks each and
one has to talk to three neighbours. This is shown in
figure 3. Having six parts within this dimension on the
neighbouring block, each of the three blocks has two
neighbours and the dependencies are simpler. Sometimes, it
can happen that we have to adjust the cutting line by one
cell to ensure this. That feature is currrently not
implemented.

Figure 3. Different neighbour configurations

After having created the new blocks by really cutting
the old ones, we have to rearrange the blocks in a way that
no processor is overloaded. For this step we use the load
balancing tool jostle[10]. Jostle was primarily designed to
be used for unstructured meshes, but it does not know
anything about meshes itself. As any other load balancing
tool, jostle works on graphs. So, we only have to translate
our new block structure, obtained after the cutting step, with
its connections to the neighbours into a weighted graph
where the block size is the weight of the node in the graph
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which corresponds to the block. If possible we get a load
balanced block distribution and have to redistribute the
blocks in the way proposed by jostle. As each block has its
own data structure and is handled separately, it is easy to
redistribute the blocks. Nevertheless, the time needed for
this data transfer may be significant.

A problem with this procedure occur when all original
blocks from the multiblock mesh have (nearly) the same
size. Due to the algorithm we got a little bit more blocks
than necessary, because we are only dividing using powers
of two and three as parts. When this cannot be compensated
by the slight overload factor, we end up with a block count
which is a little bit larger than the number of processors. As
all the blocks have still nearly the same size we end up with
a significant load imbalance. This can either be solved by
cutting blocks in parts of different size or by cutting one of
the resulted blocks further on to fill the gaps on the
processors with appropriate parts. As these problem can
only be identified after having done the first load balancing
step, this is to be done in a future step.

But we may not only have blocks which are too large
for one processor, there may also be blocks which are too
small to fully utilize the capacity of one processor.

Figure 4. Original Multiblock Mesh
In order to gain all the cycles of these processors, the

new program is able to handle more than one block on each
processor. This is basically enabled by the already described
data structure and Communication layout. The number of
blocks possible on each processor is only limited by the
processors memory.

As an example the figures 4 to 6 show how the load
balancing  procedure is working for a mesh with 68712 cells
in 6 blocks. The largest block of the original mesh shown in

figure 1 contains 32256 mesh cells, the smallest 1176 mesh
cells.

Figure 5 shows the mesh produced by the automatic
block cut algorithm, which cuts the blocks which are too
large for one processor. It is assumed that the calculation
will be done on 9 processors. The resulting mesh now has
11 blocks. The largest block (black)  was cut into four
pieces, the two blocks above and below the black (both dark
grey) into two pieces each. The invisible block at the nose
was not cut.

Figure 5. Mesh after blocks have been cut

In figure 6 the obtained distribution of the 11 blocks to
the 9 processors is shown. Same numbers in the blocks
mean same processor. The processor with the highest load
has to calculate 8064 mesh cells, the processor with the
lowest load has to calculate 6048 mesh cells. The load
imbalance in this
case is 18 %. The load imbalance could be less, if we would
do an additional run cutting a small block once more into
pieces, in order to fill the small gaps on the less loaded
processors. But this is currently not implemented.
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Figure 6. Mesh and block distribution after load
balancer run

Due to the modular structure of the program, the
replacement of the load balancing tool is easily possible.

 Parallel Solver

An important step was the parallelization of the Jacobi
line relaxation solver. The idea we found in [11] and we
adapted to our needs was to use an additional splitting
method to reduce the coupling between the matrix parts
located on different processors. Let us assume we have a
tridiagonal matrix A and have to solve the
system ruA

rr =  in parallel. We split the matrix A onto for

example three processes,

MLA += (1)

with

=L

and

=M

This means L contains the local parts of the matrix A on
each process and M contains the parts coupling these local
parts. With this splitting of A we now have to solve

ruML
rr =+ )(  (2)

moving the coupling parts on the right hand side we get

uMruL
rrr −= (3)

Introducing an iteration scheme and now using the old
solution on the right hand side for the update we have

)1()( −−= jj
uMruL
rrr

(4)

Putting the local parts of A, i.e. L on the right hand side by
inverting L (locally on each process) we finally get
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
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
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(5)

Now it is possible to solve the different matrix parts in
parallel with a following communication step to exchange
the results between the neighbours in order to update the
right hand side for the next subiteration or iteration.

Based on this idea we developed a new solvers with a
different communication patterns. The heptadiagonal system
is split as shown above. The solver does a complete solving
step of the system using the sequential solver on each
process, exchanges the results with its neighbours and
finally does an additional solving step without inverting the
local matrix L a second time. This leads in total to an
additional computational effort of about 20 % for each
iteration.

Figure 7.  Convergence speed of the parallel solver

Figure 7 shows the convergence speed of the parallel
solver which was measured to be 1% worse compared to the
sequential one in a matchable case.

5. Results

The obtained parallel multiblock flow solver has been
used to perform reentry calculations for the colibri capsule
and the X-38, the prototype of the crew rescue vehicle for
the international space station (ISS). In figure 8 the result of
an Euler nonequilibrium computation for the X-38 is shown.
The angle of attack is 40 degrees and the mach number is
19.8 .

Due to the usage of Fortran90 and MPI the code is
portable and was tested on NEC SX-5, Hitachi SR8000,
Cray T3E, IBM SP3 a DEC alpha cluster and an IA-64
system. The performance on the NEC-SX5e system with a
well sized problem is nearly 1.5 Gflops which is 37% of the

Figure 8. X-38 Calculated Mach number distribution,
Euler nonequilibrium flow, angle of attack 40 degrees,
mach number 19.8.

peak performance. Limiting factor on that system is
currently the dynamic allocation of the temporary arrays,
which is done within every iteration. This should be
optimized in the future.

The scaled speedup on the Cray T3E is given in table1.

Mesh size Mesh
blocks

Proc.
count

Simulation
time

Efficency

  24 000 5 18 255.3 1.0
192 000 5 144 285.7 0.893

Table 1. Scaled speedup on the Cray T3E

Figure 9 shows the Speedup for a 192000 mesh cell
calculation for the colibri reentry vehicle. To compare the
computing times, 20 iterations were calculated. The smallest
case which could be calculated runs on 72 processors.
Smaller processor numbers were not possible due to the
memory usage of the program and the Cray T3E in Stuttgart
having only 128 MB of memory per processor.

The given speedup values are compared to that case
with 72 processors. The reason for the shown superlinear
speedup for 108 and 216 processors is a better block shape
in this cases compared to the case running on 72 processors.

Parallel Solver
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Figure 9. Speedup for 20 Iterations on a 192 000 cell
colibri mesh on the Cray T3E
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