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Re-entry Simulation - X38 (Prototype of CRV)
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Sequential 2D/3D URANUS (Non Equilibrium Flows)

• Cell-center oriented finite volume approach

• solving the unsteady, compressible Navier-Stokes equations

• the implicit equation system is solved iteratively by Newton’s
method

• two different limiters for second order accuracy

• CVCV multiple temperature gas phase model

• Chapman-Cowling transport coefficients models

• Gaskinetic gas-surface model with different catalysis models

• PARADE/HERTA gas-radiation coupling
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Parallelization

• domain decomposition

– with two halo cells at the subdomain boundaries

• dynamic data structures using Fortran90

• special solver

• execution model SPMD

• message-passing with MPI

• still working only on C-meshes
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Why Using Multiblock Meshes

• There are topologies which cannot be meshed or which are hard to
mesh with a C-mesh

• Singularity and sometimes heavily distorted mesh cells are limiting
the convergence rate

• using unstructured meshes would result in rewriting the code

• to obtain performance on current Supercomputers is easier with
structured meshes

•         using multiblock meshes:

– meshing of complex topologies is possible

– structured blocks

– Performance easier to obtain
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A Multiblock Mesh for X-38
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Characteristics of Multiblock Meshes

• Each block may have a local coordinate system which is different

from that of its neighbours

• A block may have one, two or more neighbours on one block side

• Physical boundaries may occur on each blockside

• Blocks have generally different sizes

      the program must be able to handle all this



High Performance Computing Center Stuttgart
Parallel Multiblock URANUS Panos Adamidis

Extensions Necessary to Handle Multiblock Meshes

• Handling of block internal orientation

• Handling of more complex neighbour dependencies

• Handling of physical boundaries at each block side

• Load balancing

• handling of multiple blocks on one processor

• automatic block splitting

• using of a load balancer for block distribution
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Axis Orientation: Different Local Index Coordiante Systems

• Reason:

• Solution: Changing storage order according to the difference during
the communication (Currently sender side)
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Neighbour Dependencies - Occurence

• A block may have more than one neighbour at one blockside
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Physical Boundaries

• C-mesh:

– a specific physical boundary type is bound to a specific block
side

• physical boundaries in multiblock meshes can occur on all of the
block sides:

Block 1

Block 2

Body
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Efficient Calculation of Boundaries

• Special data structure for each boundary type:

– location of each boundary

– subtype of the boundary

• Only one code segment for boundary handling

– no doubling of code for each side
• one code to update and maintain

• no cut and paste bugs

• No branches

– chance of performance improvement
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Load Balancing

• Target: Efficient use of Massively Parallel Processors

• Blocks have different size

• Block number is generally different from number of used processors

• Initial load balancing is necessary

• Problems to solve:

– There are blocks which are too large to be calculated efficiently
onto one processor

– Block splitting necessary

– There are blocks which are too small to be calculated alone
onto one processor

– Process should be able to calculate more than one block
at a time
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Extensions for block handling

• Different block numbers on a process

– Extension of the subroutines and algorithms
or block loops around subroutines

– Communication between blocks on one process is done
using MPI

– Extension of the communication structure, so that each
incoming message reaches its block
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Load Balancing Step

• Using (parallel) jostle to distribute the obtained blocks to the

available processors

• Generating a graph out of the block distribution with:

– nodes representing the blocks

– node weight representing the block size (computational effort)

– edges representing the neighbour dependencies between

blocks

• block redistribution according to jostle’s suggestion
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Example Block Distribution (I)

• X-38 mesh:

– 6 blocks

– 68712 cells

– largest: 32256

– smallest: 1176
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Example Block Distribution (II)

• Same mesh with blocks cut
automatically:

– 9 procs

– 11 blocks
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Example Block Distribution (III)

• Blocks distrubuted to
the processors:

– largest 8064

– smallest 6048

– load imbalance: 18 %
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Parallelization Solver -- Idea
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Parallelization Solver -- Convergence
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Results: Portability

• Portability is achieved due to the usage of

– MPI

– Fortran90

• Was tested on:

– Cray T3E

– SX-5

– SR8000

– IA 64

– PIII 1GHz

• Earlier Version run on:

– IBM SP

– Compaq Alpha-Cluster
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Results

• Solution

(X-38 NG)

– mach 19.8

– angle of attack

40°
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Results Speedup

Processors
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Results Scaleup T3E

Mesh size Mesh blocks Blocksno. for
calculation i.e.
Proc. count

Simulation time Efficency

  24 000 5 18 255.3 1.0

192 000 5 144 285.7 0.893
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Outlook

• Adding the viscous fluxes for Navier-Stokes

• Adding the necessary algorithmic extensions for adaptive mesh

refinement

– refinement algorithm

– interpolation at block boundaries

– refinement criteria (gradient ?)

– data structures are already prepared

• Migration of the metacomputing extensions
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Summary: Parallel 3D-Multiblock URANUS

• Portable data parallel simulation program

– Fortran90 (dynamic data structures)

– message passing using MPI

• Domain decomposition based on structured multiblock meshes

• Different index directions within blocks

• Physical and inner boundaries on all block sides

• Different neighbour numbers on each block side possible

• Handling of different block sizes (automatic initial block distribution)

• Blocks not fitting on one process (load imbalance) are split
automatically

• Number of blocks on each process only limited by memory


