
1

Debugging Complex Programs with Etnus TotalView

Mary Kay Bunde, Etnus

ABSTRACT: The Etnus TotalView debugger is a state-of-the-art, powerful debugger
uniquely suited for debugging complex and parallel codes on major UNIX platforms and
Linux. This papers describes some of the unique features of TotalView, and gives somes
examples of how TotalView addresses some specific types of debugging problems in common
parallel models of today.

1. Introduction

Etnus TotalView is the debugger for complex and
parallel code. Having roots in high performance computing,
TotalView and its development and support team
understand the problems in debugging codes typical of those
being written at ECMWF, Los Alamos National Labs,
Argonne National Lab, the National Institutes of Health,
Chevron, and the majority of other classic HPC
organizations. In recent years, Etnus has enjoyed increased
visibility within commercial segments where threaded code
is troublesome to debug. Customers using TotalView there
include: Amazon.com, Nortel, Cisco, State Street Bank,
British Telecom, Alcatel, and many more.

In this paper, I will describe some of the challenges of
debugging complex code and how TotalView aids in the
debugging process. I’ll describe specific benefits and
features of TotalView, and give a preview of our next
release, TotalView 6.0.

2. TotalView Overview and Benefits

TotalView is a flexible and powerful debugger, with
both graphical and command line interfaces, that supports
debugging of codes written in C/C++, Fortran (77/90/95),
and assembly code.

Serial programs will typically fail, when there is a bug,
the same way each and every time. Not so with parallel
code. Processes may finish in a different order than
expected, or processors may not communicate as you
intended. TotalView supports debugging of parallel
programs, with features built-in specifically to address
problems like these and others.

This debugger lets you control your program at all
levels – program, process, and thread. Many styles of
breakpoints give you the flexibility to start and stop your
program in various ways, depending on the debugging
situation. For example, a conditional breakpoint might be
appropriate if you want to stop your program the 100th trip
through a loop. And an evaluation point is perfect for testing
a fix to your code without ever touching or recompiling the
source.

In addition to this flexibility of control, TotalView has
many data management features to help you debug
problems with your data. These features are uncommon in
other debuggers, and I’ll describe them later in this paper

Along with TotalView’s powerful features and
flexibility comes a unique multiplatform capability. It runs
on major UNIX platforms as well as Linux. Table 1 lists the
platforms on which TotalView is currently available. For up
to the minute information, please visit our Platforms page:

http://www.etnus.com/Products/TotalView/platforms/in
dex.html

Cug, Spring 2002 Etnus TotalView 2

Table 1. Supported Platforms

Platform Operating System
SGI MIPS Irix
Compaq Alpha Tru64 UNIX
HP HP-UX
IBM RS/6000 and
SP Power

Power AIX

Sun Sparc SunOS 5 Solaris
Compaq Alpha Linux
Intel x86 X86 Linux

On SGI platforms, TotalView is available on IRIX 6.2 and
later operating system levels. Additionally, TotalView
supports the following compilers and parallel models on
SGI:

♦ MIPSpro 7.2.1, 7.3, and 7.3.1.2 C/C++ and Fortran
compilers

♦ KAI C++ 3.4
♦ SGI OpenMP Fortran and OpenMP C++
♦ KAI Guide 3.8 and 3.9
♦ SGI MPT 1.2, 1.3, 1.4
♦ MPICH 1.1.2, 1.2.0, 1.2.1
♦ ORNL PVM 3.4.1

3. General TotalView Features

TotalView has many features that simplify debugging,
whether you’re debugging a parallel code or a complex
serial code. This section describes some of those features.

3.1 Breakpoints
TotalView has several types of breakpoints:

♦ Simple breakpoints, which every debugger has
♦ Conditional breakpoints let you specify a simple

expression to evaluate before TotalView decides
whether to stop the program or not. For example,
you may wish to stop the program at the 100th trip
through a loop. This expression would be written

if (i==100);$stop

$stop is one of many TotalView built-in intrinsics
you can use to instruct TotalView within
evaluation statements.

♦ Evaluation points let you write code fragments that
are compiled and executed on the fly at the
designated line number. The most common use for
eval points is to test a simple fix to your program
without ever touching the source and recompiling.

♦ Barrier points, which will be discussed in section
4.1

♦ Data watchpoints tell TotalView to stop the
program if the value of a local variable changes.

TotalView supports both conditional and
unconditional watchpoints. A powerful use of
conditional watchpoints is to test thresholds to
ensure they haven’t been violated.

3.2 Dive

Perhaps the best-loved feature of TotalView, dive is a
powerful tool for obtaining more information about any
object. Simply double-left-click on anything, and TotalView
will display more information about it if it can. For
example, if you dive on a variable, TotalView will show
you the value of that variable. If you dive on a function,
TotalView will show you the source code for that function.

3.3 Data Analysis Features
TotalView has features to analyse data within your

code. Many of these features cannot be found in other
debuggers.

♦ Dive – already described
♦ Slicing – lets you view a subsection of your array
♦ Filtering – lets you view only the elements satisfied

by an expression you write. For example “>100”
will show all the array elements whose values are
greater than 100. Figures 1 - 3 shows a progression
of views of a 100-element array. This array, as you
see, has been sliced and filtered.

Figure 1. A 100-element array

Cug, Spring 2002 Etnus TotalView 3

Figure 2. 100-element array, sliced

Figure 3. A 100-element array, filtered

♦ Statistics – provides important information about
your array. For example, min, max, mean values,
checksum, the number of NANs and the number of
INFs (in the case of floating point numbers).

♦ Visualization – TotalView lets you visualize data.
You can either set a breakpoint to view a snapshot
in time, or you can write an evaluation point and
use the built-in intrinsic $visualize. This is handy
for watching your data change. For example you
could add this evaluation point to a loop that is
operating on an array. Then each trip through the
loop the visualization would be updated, thereby
creating an animation of your data as the program
executes. It’s a great way to see anomalies in your
data. Figure 4 shows a 2-dimmensional array that’s
been visualized.

Figure 4. Visualization of 2-dimmensional array

♦ Data watchpoints – described in the previous
section.

♦ Sorting – lets you sort the data you are viewing in
either an ascending or descending fashion. It does
not change the contents of memory.

All the data analysis features can be combined to give
you powerful tools for identifying problems in your data.
For programs with gigabytes of data, these analysis features
can be powerful time savers.

3.4 Type Mapping
Oftentimes, compilers do not expose enough

information about data types for any debugger to display
them properly. Type mapping lets you tell TotalView how
to display types of data that otherwise generally confuse
debuggers. User defined and non-native types are examples
of such objects.

Within the command line interface (CLI) you can write
a prototype definition that describes how you want data of
the specific type to appear. Then every time TotalView
displays data of that type (in either GUI or CLI interface), it
will display as you’ve defined. It is rather like turning trash
into treasure!

4. Debugging Parallel Codes

While it is impossible to describe all the problems that
can go wrong with parallel code, there exist some general

Cug, Spring 2002 Etnus TotalView 4

issues with each common model for which TotalView is
especially suited to help.

4.1 MPI Programs and TotalView

Common issues with MPI programs include
♦ Deadlocks (or worse, wrong answers) due to inter-

process communication problems
♦ Processors completing out of order
♦ Misusing local and global variables

Inter-process communication problems are especially
difficult to debug because tracing the path of
communication can be difficult to do by hand, or even with
the help of print statements. TotalView offers two tools to
provide insight into how your processes are communicating.

The Message Queue Window is a textual dump of the
state of your MPI communicators. Here you can assemble
the puzzle of pending sends, receives, and unexpected
messages in your program. Further, you can dive on many
of the fields in this window to obtain further information or
to open an appropriate Process Window.

TotalView can also visualize the Message Queues of
your program at a particular instant (for example when
you’re deadlocked), perhaps providing insight even faster
than examining the textual queues. Figure 5 shows the
visualization of the program’s inter-process communication,
and Figure 6 depicts the contents of the message queues via
the Message State Window.

Figure 5. Message Queue Graph

Figure 6. Message State Window

In the visualization in Figure 5, the numbers within the
boxes indicate a process’s rank. The numbers next to the
arrows indicate the number of messages when TotalView
created the graph. Diving on an arrow displays the Message
State Window to provide detailed information about those
messages. Diving on a box opens a Process Window for that

Cug, Spring 2002 Etnus TotalView 5

process. Here are some hints as you peruse a Message
Queue Graph:

♦ Pending messages often indicate that a process
cannot keep pace with the amount of work it is
expected to perform. These messages indicate
places where you may be able to improve your
program’s efficiency.

♦ Unexpected messages can indicate that something
is wrong with your program because the receiving
process does not know how to process the message.

♦ After a while, the shape of the graph tends to tell
you something about how your program is
executing. If something does not look right, you
might want to determine why it looks different than
expected.

When debugging MPI programs, along with any other
parallel program, it is often useful to start and stop
individual processes or threads, or to carefully observe how
they execute with respect to each other. TotalView’s barrier
breakpoint, and the ability to control the offending program
at the process level become invaluable tools for problems in
MPI or other parallel codes.

The barrier breakpoint lets you set a barrier at a
particular place in your program. When the first process
reaches the barrier, all processes will stop (this is
configurable). At this point, you can examine the state of
your program, and perhaps choose to continue. If you
choose to continue, those processes having arrived at the
barrier will remain there, while the others execute. Of
course, the program will stop again when the next process
reaches the barrier.

There may be times when you wish to leave a subset, or
perhaps all but one process, in their current state and
continue execution with just one process (or a subset of
processes). TotalView easily lets you change your control
group to be that of a subset of processes, or a single process.
Then, any command you give to TotalView will only
operate on that process (or subset). This allows you to drill
down or fine-tune your debugging session as you learn more
about why your program is failing.

Misuse of global and local variables in parallel
programs is common. Using the drill down approach to
isolating bugs may help you isolate misuse of local and
global variables as well. You will find it also useful to see
the value taken by every instance of an MPI variable – that
is, the value across each and every process in the program.
TotalView offers a laminated view of data for this purpose.
Simply dive on an object, and choose Laminate > Process
from the View menu. You may see problems with data as
you view their contents side by side or watch them change
as your program executes.

4.2 OpenMP Programs and TotalView

OpenMP programs pose unique problems in that
the compiler does the work to parallelize the code. In order
to exploit parallelism in parallel sections of OpenMP code,
the OpenMP compiler must generate code for the parallel
region that can run concurrently in many threads, while still
accessing the shared variables. Most OpenMP compilers
accomplish this by creating what is commonly called an
outlined routine. The outlined routine is called by the
OpenMP runtime, which assigns the outlined routines to
specific threads for execution.

Since the OpenMP compiler performs the
parallelization of the program, and the OpenMP runtime
assigns each outlined routine to a thread for execution, the
user need not know what is exactly going on with the
program. However the debugger must understand it in order
to help the user find bugs.

Common issues with OpenMP programs include
♦ Debugging within parallel regions
♦ Understanding how the program arrived at its current

execution point
♦ Accessing private, shared, and thread-private data

TotalView lets you debug code within parallel regions.
To arrive in a parallel region, however, you must set a
breakpoint within the region, and run to that point.
TotalView does not allow you to step into the outlined
routine. Setting the breakpoint is the only safe way to ensure
you arrive at the place you are expecting.

Upon arriving in a parallel region, you may be able to
control your program at the thread group (all the like
threads) level or at the single thread level. Once in a parallel
region, you might also like to know how, exactly, execution
arrived at this point. TotalView’s stack parent token is an
arrow in the stack frame of the Process Window (the stack
frame is in the upper left corner of the Process Window) that
points to the parent routine that spawned this worker thread.
Figure 7 shows a close up of the stack frame and stack
parent token. Diving on the stack parent token will change
TotalView’s context, and your view, to that parent.

Figure 7. OpenMP stack parent token

Other interesting things to note when viewing the
context of a worker thread include:

♦ In the lower left corner of the Process Window, the
threads pane, you can see the number of threads in
the program. On some operating systems, you will

Cug, Spring 2002 Etnus TotalView 6

be able to distinguish between operating system
threads and user threads.

♦ You can see the name(s) the compiler has
generated for each of the threads and on which
thread you are currently focussed.

Displaying the values of OpenMP local private
variables in parallel constructs poses no problems for
TotalView. This capability is already built-in. When you
dive on any data object, TotalView displays the value(s) of
that object.

When debugging OpenMP code, it is often useful to see
the value taken by every instance of a private variable – that
is, the value across each and every thread in the program.
TotalView offers the laminated view of data for this
purpose. Simply dive on an object, and choose Laminate >
Thread from the View menu. Figure 8 shows an example of
a dive (background picture) and its laminated counterpart
(foreground).

Accessing thread-private data is a bit more complex,
and is compiler and operating system dependent. Even so,
TotalView does allow you to access thread-private data, in a
similar way to showing other data.

4.3 Threaded Programs and TotalView

Common issues with threaded programs include
♦ Understanding the execution order of the program
♦ Synchronization, locks, and condition variables

Multithreaded codes can be a nightmare to debug. Not
only must you rely on the scheduler for scheduling threads,
but each operating system has a different thread-scheduling
model, so your program could execute differently on

different platforms. It is difficult to know how your
program is actually executing.

The first aid TotalView has is to automatically group
your threads according to the task they are doing. Like
threads will be in a group. If you have a hint that a thread
designed to do a very specific piece of work is in error, you
can look at all the threads designed to do that piece of work,
and ignore others.

TotalView lets you regroup threads into groups of your
own choosing, through the Process Thread Setting (P/T sets)
mechanism. You can then issue commands, such as step and
next, or set breakpoints to just a single group, the whole
program, or (on some operating systems) just a single
thread.

TotalView also does its best to distinguish between
threads that you care about and all other threads – even
those spawned by the operating system on behalf of the
program you are debugging. In doing so, TotalView can
hide those extraneous threads from your view, such that you
never have to worry about them while debugging.

Synchronization and locking contention can pose
problems in threaded code. TotalView exposes the operating
system locks, mutexes, and condition variables so that as
you step through your code you can get a better
understanding of how your program is using, asking for, and
waiting on, resources.

As discussed for the other parallel models, barrier
points are also useful tools for controlling threaded code.

5.0 TotalView 6.0 – A Preview

TotalView 6.0 will be released later this year. Here is a
brief look at the contents of the release:

New hardware and operating system support:
♦ Sun 64-bit, Solaris 7, 8, 9
♦ IBM Power 4 and Regatta systems, AIX 5.1
♦ Scyld systems

New Compilers:
♦ Sun Forte 6, update 2. Forte 7
♦ Intel Linux compilers
♦ Lahey F90/F95 version 6.1
♦ GCC 3.X
♦ KAI 4.0
♦ UPC (on Compaq first)

TotalView Features
♦ Improved C++ support: proper scoping, C++

namespaces, ability to write expressions in C++,
improved handling of C++ templates

Figure 8. OpenMP thread object, laminated view

Cug, Spring 2002 Etnus TotalView 7

♦ Memory utilization statistics, including heap, data,
and text sizes, stack size of the main thread, overall
memory footprint size (including mappings), and a
sort by column feature.

♦ Improved performance on SGI and IBM for large
codes running under TotalView’s control

♦ The addition of a P/T-Set browser in the GUI
(formerly P/T sets were managed in the CLI only)

♦ Ability to evaluate expressions across processes,
called parallel evaluation of expressions.

♦ More control over the way in which data is
displayed. You choose the type, the presentation
(scientific, fixed, decimal, etc), and the format
(width, precision, justification, etc).

♦ Dive in all – transforms one field member from an
array of structures to an array of the field member’s
type. OR transforms an array of pointers to an
array of objects. The result can then be sliced,
sorted, filtered, etc…

♦ Display C++ pointer variables as arrays, which can
then be sorted, sliced, filtered, etc…

♦ Attach to a subset of processes

Conclusion

Etnus TotalView is a robust, stable, and powerful
debugger. Its advanced features ease the debugging process
of complex and parallel code. Etnus offers free two-week,
fully functional, evaluations of TotalView from the website
at www.etnus.com/Download/demo-tv.html.

About the Author

Mary Kay Bunde is the Director of Market
Development at Etnus. She previously worked at SGI and
Cray, as Engineering Manager of the Tools group. She can
be reached at Etnus, 24 Prime Parkway, Natick, MA 01760.
Email: mkay@etnus.com.

