
1

Code Optimization and Parallelization on the Origins

- Looking from Users' Perspective

Yan-Tyng Sherry Chang
NASA Advanced Supercomputing Division

NASA Ames Research Center
Moffett Field, CA, USA

ABSTRACT: Parallel machines are becoming the main compute engines for high performance computing. Despite
their increasing popularity, it is still a challenge for most users to learn the basic techniques to optimize/parallelize
their codes on such platforms. In this paper, we present some experiences on learning these techniques for the Origin
systems at the NASA Advanced Supercomputing Division. Emphasis of this paper will be on a few essential issues
(with examples) that general users should master when they work with the Origins as well as other parallel systems.

1. Introduction

Parallel machines such as the IBM SP, the Compaq Alpha
servers, the SGI Origins 2000 and 3000, etc., are becoming the
main compute engines for high performance computing. For
example, for the past few years the NASA Advanced
Supercomputing (NAS) Division at NASA Ames has been
working closely with SGI to bring increasingly larger single
system image Origins into production. At present, many large
Origin 2000 (O2K) machines (of sizes 64p, 128p, 256p, and
512p) at NAS are used by scientists for production work.
Upgrade of one of these O2K production machines into an O3K
is currently underway. In addition, the first 1024-processor
single system image shared memory O3K machine, designed
under collaborative effort between SGI and NAS, was built in
the summer of 2001. This machine has since been subjected to
rigorous testing and improvement by NAS and SGI staff in
order to deliver the best possible performance for large
applications and to bring this machine into production.

Despite the increasing popularity of parallel machines, it is
still a challenge for most users to learn how to work with them
in order to achieve good performance for their codes. In
contrast, obtaining good performance on traditional vector
systems such as the Cray C90s seems relatively easy and users
usually do not have to change their codes much to achieve this
goal. The relatively difficult task of optimizing codes on the
parallel machines is rooted in the complexity of the hardware
and software (operating system, compilers, libraries, tools, etc.)
design driven by the architecture of these systems. In the
following, some experiences are presented on learning the
optimization and parallelization techniques for the Origins at
NAS. Although the discussions are limited to the SGI Origins,
many concepts described in this paper should be applicable to
other parallel systems as well.

2. Users' Perspective

For the O2K and O3K machines, there are quite a few
sources of information provided by SGI where users can obtain
knowledge about them, including: (1) fee-based training and/or
workshops, (2) the annual developer's conference, and (3) SGI

on-line library. Among them, the SGI document 007-3430-002,
entitled "Origin 2000 and Onyx Performance Tuning and
Optimization Guide", is one that is easily accessible to all and
provides very thorough information. In addition, most of the
information in that document is also applicable to the O3K
machines. However, learning from that document can be an
enormous task since it is very extensive (with more than 300
pages) and consequently, readers can get lost easily.
Furthermore, that document lacks detailed explanation of one
of the most fundamental and critical issues, namely, the cache
structure, which is a major bottleneck in learning to work with
parallel systems.

The important role of "cache" is witnessed in the steps
involved in code optimization and parallelization. These steps,
as recommended by SGI, are:

For single-processor codes
1. Get the right answers
2. Use existing tuned code (-lm, -lfastm, -lscs)
3. Find out where to tune
4. Let the compiler do the work
5. Tune cache performance

For multi-processor codes
6. Tune for 1-CPU first
7. Parallelize codes
8. Identify and solve bottlenecks
9. Fix false sharing
10. Tune for data placement

For single-processor codes, in step 1, 'get the right answers'
on the Origins implies that users have to take care of some
porting issues such as data formats, availability of certain
libraries, compiler flags to use, and round-off differences, etc.
In addition, debugging may be required and it may be a little
tedious. Otherwise, step 1 is straight-forward.

In step 2, 'use existing tuned code' refers to using SGI's math
(-lm, -lfastm) and scientific libraries (-lscs) in which many
routines have been tuned for the Origin's hardware. For
example, the standard math library includes special "vector
intrinsics" (i.e., vectorized version of certain functions) which

2

take advantage of software pipelining capabilities of R10000
and R12000 CPUs to fill instruction units in the operation. In
addition, many routines in the Scientific Computing Software
Library (SCSL) have been optimized for good cache
performance. This step does not require user-intervention and
thus is straight-forward.

In step 3, 'find out where to tune', usually the profiling tools
perfex or SpeedShop are used to analyze the performance of a
code and to help identify what a code is suffering and where it
occurs. The difficulties in this step are two-fold. First, for a
general user, understanding how perfex and SpeedShop work
and what their outputs reveal is a non-trivial task. Second,
many codes running on the Origins may be identified as not
cache-friendly. Yet, a user may not know why it occurs and
how to resolve it. Fortunately, some of the bad cache
performance problems can be resolved by the compilers
automatically.

In step 4, 'let the compiler do the work', the optimization
done at -O2 may relieve some of the cache performance
problems but it is not as effective as -O3. At -O3, software
pipelining (-SWP) and loop nest optimizations (-LNO) are used
automatically to improve cache and instruction scheduling.
Many techniques in LNO such as padding, loop interchange,
loop fusion, cache blocking and prefetching, etc., are very
useful for improving cache performance. However, depending
on the nature of the code, the settings in -O3 may need to be
fine-tuned for ultimate performance. It is also possible that -O3
may not be the right choice for a code. In these cases, users
may want to go to step 5 and tune the cache performance
themselves.

In step 5, 'tune cache performance' manually is required when
the compiler does not or dare not optimize the code for best
cache performance. The same techniques used in -O3 can be
applied manually. To do this step successfully, it is important
that users first have a thorough understanding of the cache
structures, the principles and techniques of good cache
performance, the nature of his/her own code and the profiling
tools to help diagnose cache problems. For general users, this is
the major bottleneck in working with the Origins.

For multiple-processor codes, as shown in step 6, the first
thing to do is to make sure the code has been optimized for
running with a single processor.

In step 7, users then try to parallelize the code as much as
possible using either the MIPSpro Auto-Parallelizing Option
(APO) through the compiler or various parallel programming
models such as OpenMP, MPI or some sort of multi-level
parallelism approach.

In step 8, 'identify and solve bottlenecks', users first analyze
the performance of the parallel code using simple metrics such
as the speedup or the scaling factor (in terms of wall-time used
or MFLOPS) to see if the code has been properly parallelized.
If the parallel performance is far from ideal, SGI's perfex and
SpeedShop or other vendor's profiling tools, (such as
CAPTOOL that performs data dependency analysis of a code)
can be used to diagnose the problems. For example, is the
fraction of the code running in serial negligible compared to the
fraction running in parallel? If the serial fraction is significant,

try to parallelize it if possible. Another question to ask is
whether the loads among the processes have been well-
balanced. Keep in mind that the overall performance of a code
is determined by the slowest process. If load imbalance is a
problem, it may be resolved by redistributing the work load of
each process.

In step 9, one examines if false sharing is a problem. False
sharing is tied up with the concepts of cache coherency and
cache contention among different processors running a parallel
program. Understanding these concepts also requires
knowledge of the cache structure. False sharing is best
diagnosed with the hardware event counters 29 and 31.

In step 10, if all of the above have been tried and the
performance is still bad, one examines if poor data placement is
the cause. A few tools are described later in this paper that can
help diagnose this problem.

In summary, code optimization and parallelization on the
Origins, as well as many other parallel systems, is a multi-
faceted task which includes working with both the hardware
(CPU, counters, cache, memory, etc.) and software (parallel
programming models, compilers, debuggers, libraries, tools,
etc.). For general users, trying to learn everything at once can
be very confusing and frustrating. Instead, a thorough
understanding of a few key issues is a better approach, and it
provides a better foundation for learning other issues. The few
key issues to master, in my own view, include: (1) the memory
hierarchy, (2) the cache structure, (3) cache coherency and
cache contention, and (4) non-uniform memory access, page
and data placement. In this paper, descriptions of these key
concepts and a few examples to further clarify them are
provided to assist users in overcoming these learning
bottlenecks.

3. The Memory Hierarchy

The building blocks of the Origins are the "nodes". Each
node contains multiple CPUs (up to 2 for O2K; up to 4 for
O3K), a secondary cache (L2-cache) external to each CPU and
some memory. Nodes are connected by some inter-connect and
the communication among them are regulated by the 'hub' (used
in O2K) or "Bedrock memory controller" (used in O3K) in
each node. Within each CPU, there are also the registers and
the primary cache (L1-cache).

During processing, the CPU can only use data in registers,
and it can load data into registers only from the primary cache.
So data must be brought into the primary cache before it can be
used in calculations. The primary cache can obtain data only
from the secondary cache, so all data in the primary cache is
simultaneously resident in the secondary cache. The data in the
secondary cache is obtained from main memory. The memory
location of the desired data can be in local memory, remote
memory or disk. Table 1 shows the memory hierarchy, the
relative total capacity and the memory access latency (in CPU
clock cycles) at each level. The values of the capacity and
latency listed are approximate and vary for systems with
different hardware. Nevertheless, all Origins exhibit the same
trend. That is, with each increasing level, the capacity becomes

3

larger since the hardware becomes cheaper and more
affordable. Yet at the same time, the latency of data access
becomes greater (cheaper but slower hardware). A miss at each
level of the memory hierarchy multiplies the latency by an
order of magnitude or more. Thus, tuning a code to be cache-
friendly (meaning diminishing/reducing accesses to main
memory, especially remote memory or disk such that all/most
accesses are satisfied by caches) is an important factor for
getting good performance on the Origins.

Memory
Level

Total
Capacity

Maximum Latency
(in CPU cycles)

registers Bytes 0
L1 cache KB 2-3
L2 cache ~MB 8-10
Local
memory

~GB 75-200

Remote
Memory

<TB > 200

disk >TB Long long time
 Table 1. Memory Hierarchy on the Origins

4. The Cache Structure

A cache-friendly code exhibits characteristics of minimum
accesses to main memory and nearly 100% hit rate on caches.
To get the most benefit when data is already in cache, one
should exercise two guidelines. The first one is "temporal
locality" which means that one should use a cache line
intensively while it's in cache and not return to it after it has
been written back to memory. The reason for practicing
temporal locality is to avoid ‘paying’ the higher latency more
than once. The second guideline is "spatial locality" which
means that one should use every word in the same cache line
while it is in cache. The reason for practicing spatial locality is
due to the nature of a cache line explained below.

4.1 Cache Line and Cache Size

Cache Type Cache Size Cache
Line

of Cache
Lines

L1-
instruction

32 KB 64 B 512

L1-data 32 KB 32 B 1024
L2-unified 4 MB (R10000)

8 MB (R12000)
128 B 32768;

65536
Table 2. Cache Structure on the Origins

A cache line is the unit of transfer between the main memory
and L2 cache or between L2 and L1 caches. On the Origins,
each cache line of the L2 cache is 128 bytes long. This is
equivalent to 32 words if each word is 4 bytes long. The L2
cache is used jointly for instructions and data. For L1 cache, the
instruction cache and the data cache are separate. Each cache

line is 64 bytes long for L1-instruction cache and 32 bytes (= 8
four-byte words) for L1-data cache. The consequence of having
more than 1 word in each cache line is that when a data is
accessed, its nearby consecutive data (ex: the other 7 words in
an L1 cache line) are accessed automatically, thus tuning for
spatial locality is an important practice.

Table 2 lists the total size of each cache, the length of a
cache line and the corresponding number of cache lines for L1-
instruction, L1-data, and L2-unified caches. On the Origins, the
L2-cache size is typically 4MB for the R10000 processors and
8MB for the R12000 processors.

4.2 Two Way Set Associative

Before a data can be brought in from memory, a mapping has
to be done to determine where the data should reside in cache.
Since the size of a cache is much smaller than the size of main
memory, many memory locations will map to an identical
cache location. There are two extreme mapping methods. The
first one is called a ‘direct mapping method’ in which data at a
given memory location can only map to one specific cache
location in one specific cache line. The benefit of this method is
that it is straight-forward for the processor to keep track of data
in cache. If the data needed is not found in its designated cache
line, then one can make the conclusion that the data is not in
cache. The drawback of this method is that if two or more sets
of data that map to the same cache line are needed
consecutively, thrashing occurs such that data in the same
cache line is always being flushed back to memory, resulting in
bad performance due to excessive waste in the form of memory
latency.

The second extreme is called a ‘fully associative mapping
method’ in which data can map to ANY cache line in cache.
The benefit is that the likelihood of thrashing is reduced to a
minimum. The drawback is that it is much more complicated
and costly for the processor to check all cache lines for either
the desired data or an empty or least-recently used cache line to
load in the new data.

The mapping method used on the Origins is two-way set
associative’. It is a compromise between the two extremes
described above. With two-way set associativity, cache is
divided into two 'ways' or parts and the set associativity
restricts each data (at a memory location) to a "set" (also called
a congruence class) of two cache lines (one in each way) within
its own set. The algorithm for determining which set a data
should map to is as follows:

Address of data/(cache size of each way)
 = cache tag, remainder m
m/ cache line size
 = set number, remainder n

For example, assuming the L2 cache size is 4MB, then the
cache size of each way is 4MB/2 way = 2MB = 2**21 bytes.
The size of an L2 cache line is 128B=2**7 Bytes. The memory
on the Origins is byte-addressable. Thus, in binary

4

representation, the (address of a data)/2**21 gives the value of
the cache tag represented by the high bits (bits 21 and above).
The value in the lower 21 bits (bits 0-20) is the remainder m.
The (value of m)/(2**7) determines which set of the cache (set
number), represented by the value in bits 7-20. The value in the
lowest bits (bits 0-6) is the remainder n and it determines the
byte-location in the cache line this data should reside. Thus, if
the addresses of two data have identical value in bits 7-20,
these two data will map to the same set of cache lines. Because
of the many-to-one mapping between memory and cache set,
the cache tag is used by the processor to determine if the data
residing in a cache line are those needed by the processor.

4.3 Least Recently Used Policy

Since the set of two cache lines that can be used by a data is
determined by the middle bits 7-20, any other data with the
same middle bit value also map to the same set. If two data that
map to the same set are needed, and, assuming they are not near
each other in memory, then both of them can be loaded into
cache when the associated cache lines are empty. One of them
is loaded into one cache line and the other data will be loaded
into the other cache line in the same set. When a third data that
also maps to the same set is needed, one of the occupied cache
lines has to be flushed in order to load the third data. The rule
used on the Origins for determining which of the two cache
lines should be flushed is such that the least recently used (read
or written) line is selected.

4.4 Quiz

Assume the L2 cache is two-way set associative, its size is
4MB and each cache line is 128B long,

(1) If the memory locations between variable a and variable b
are exactly 2MB apart, do they map to the same set?

(2) If another variable c is exactly 2MB apart from b, does c
map to the same set as a and/or b?

(3) If a, b, and c are needed one after another, does thrashing
occur?

(4) If the L2 cache size is 8MB, while the rest are the same,
what are the answers to questions 1,2 and 3?

(5) If everything stays the same as in (4) except that the L2
cache is now four-way set associative, what are the
answers to questions 1, 2 and 3?

Assume the L1 cache is two-way set associative, its size is
32KB and each cache line is 32B long,

(6) Do a, b, and c map to the same L1 cache set?
(7) If variable d is 32B away from a, does d map to the same

L1 cache set as a?

4.5 Practices of Good Cache Use

Programs that exhibit temporal locality and spatial locality
should achieve good performance. In practice, one should
follow these guidelines when designing his/her programs:

a. Use stride-1 accesses
b. Avoid power-of-2 sized arrays or do padding
c. Group together data used at the same time

The MIPSpro compilers used on the Origins provide many
options to tune cache performance. Among them, the
optimization level at -O3 provides software pipelining (-SWP)
and loop nest optimization (-LNO) that can better schedule
instructions and data for cache performance. The major
optimizations by LNO include:

a. array padding
b. loop interchange
c. loop unrolling
d. cache blocking
e. loop fusion
f. loop fission
g. prefetching
h. gather-scatter
i. vector intrinsics

The man page for LNO provides more information about
these techniques. Some of these techniques can also be applied
manually if the compiler fails to tune a code for cache
performance or if the higher level of optimization at -O3 is not
suitable for a code.

4.6 Detecting Cache Performance Problem

Two profiling tools, perfex and SpeedShop, provided by SGI
can be used to diagnose performance problems. Perfex is
generally used to get a quick diagnosis of what the code may be
suffering. SpeedShop is used to find out where (which
subroutine, function, line number) the bottleneck occurs.

4.6.1 Using perfex

Using the profiling tool perfex, the values of a few hardware
event counters listed below are good indicators of poor cache
performance. Among them, the miss handling table occupancy
(counter 4) is available only for the R12000 CPUs. Perfex also
provides some useful statistics and ranges of estimated time for
each event if the -y option is used. Some of the statistics also
provide indication of cache performance.

Hardware counters:

a. event counter 26 - secondary data cache misses
b. event counter 25 - primary data cache misses
c. event counter 10 - secondary instruction cache misses
d. event counter 9 - primary instruction cache misses
e. event counter 23 - TLB misses
f. event counter 4 - Miss Handling Table occupancy
Useful perfex statistics for cache performance diagnostics:

5

a. Primary cache line reuse
This is the number of times, on average, that a primary data
cache line is used after it has been moved into the cache. It is
calculated as graduated loads plus graduated stores minus
primary data cache misses, all divided by primary data cache
misses.

b. Secondary Cache Line Reuse
This is the number of times, on average, that a secondary data
cache line is used after it has been moved into the cache. It is
calculated as primary data cache misses minus secondary data
cache misses, all divided by secondary data cache misses.

c. Primary Data Cache Hit Rate
This is the fraction of data accesses that are satisfied from a
cache line already resident in the primary data cache. It is
calculated as 1.0 - (primary data cache misses divided by the
sum of graduated loads and graduated stores).

d. Secondary Data Cache Hit Rate
This is the fraction of data accesses that are satisfied from a
cache line already resident in the secondary data cache. It is
calculated as 1.0 - (secondary data cache misses divided by
primary data cache misses).

e. Cache misses in flight per cycle (average)
This is the count of event 4 (Miss Handling Table (MHT)
population) divided by cycles. It can range between 0 and 5 and
represents the average number of cache misses of any kind that
are outstanding per cycle.

To use perfex, no recompile is needed. When the perfex
command is executed, profiling will take place and the output
will be sent to stderr. For example,

perfex -a -x -y ./a.out
or
perfex -e 26 ./a.out

4.6.2 Using SpeedShop

SpeedShop is the generic name for an integrated package of
performance tools to run performance experiments on
executables, and to examine the results of those experiments.
SpeedShop provides several profiling experiment types:

a. User time
b. PC sampling
c. Ideal time (changed to "bbcounts" in SpeedShop 1.4.3)
d. Hardware counter profiling
e. mpi profiling
f. Floating point exception tracing
g. Heap tracing
h. I/O tracing

Brief descriptions of a few commonly used experiments are
provided below:

usertime: It returns CPU time, the time your program is actually
running plus the time the operating system is performing
services for your program. It uses statistical callstack profiling
with a time sample interval of 30 milliseconds.

[f]pcsamp: It returns the estimated CPU time consumed by each
source code line, machine code line, and function in your
program. It uses statistical PC sampling with a sample interval
of 10 milliseconds. If the optional f prefix is specified, a sample
interval of 1 millisecond is used.

Ideal: It returns the best possible time that a program is capable
of achieving. It uses basic-block counting, done by
instrumenting the executable.

[f]dsc_hwc: This is one of the many options from hardware
counter profiling. It uses statistical PC sampling, based on
overflows of the secondary data-cache miss counter (counter
26), at an overflow interval of 131. If the optional f prefix is
used, the overflow interval will be 29.

To use SpeedShop, no recompiling is needed. The command
ssrun is used to collect SpeedShop performance data and the
command prof is used to analyze and display the data collected
by ssrun. For example,

 ssrun -usertime a.out
 prof a.out.usertime.m754877

4.7 Cache Thrashing Example

In appendix A, a sample program that exhibits cache
thrashing behavior is provided. This program is modified from
example 6.5 of the SGI document "Origin 2000 and Onyx
Performance Tuning and Optimization Guide". The size of each
of the four arrays (ex: real*4 a(1024,1024)) is exactly 4MB,
and thus accessing the (i,j) element of each array at the same
time causes cache thrashing if the L2 cache size is either 4MB
or 8MB. To examine the effect of optimization by the compiler
on the performance of this code, it is compiled with -O0, -O1, -
O2 and -O3 separately. During execution, 1 processor (R10000
CPU, 250MHz with 4MB L2 cache on an O2K machine) is
used.

4.7.1 Performance

The first four columns of Figure 1 show the user CPU time
in units of second used by this program at each level of
optimization. As seen in this figure, the performance at -O3 is
the best and is due mostly to the better cache utilization at this
level of optimization.

6

A similar performance (compared to that with -O3) can be
obtained manually without optimization by the compiler.
Modifying the code such that the size of each of the four arrays
is 1025*1024 instead of 1024*1024 will prevent a(i,j), b(i,j),
c(i,j) and d(i,j) from mapping to the same set of cache lines, and
no cache thrashing will occur. This is demonstrated in the last

column of Figure 1 for which the manually modified code is
compiled with -O0.

 Figure 1. Performance (in CPU seconds) of the
 program in Appendix A.

4.7.2 Diagnosis

The bad performance of the original code when it is compiled
with -O0 is diagnosed with perfex as shown in Table 3. With
"perfex -a -x -y", it shows that event counter 26 (L2 data cache
misses) contributes the most to the time used by the program.

event Counter value Typical time
0 Cycles 653654512 2.614618
16 Cycles 653654512 2.614618
26 Secondary data

cache misses
4178336 1.261857

14 ALU/FPU progress
cycles

82554064 0.330216

7 Quadwords written
back from scache

8635504 0.221069

25 Primary data cache
misses

4348624 0.156724

2 Issued loads 29675728 0.118703
18 Graduated loads 29524944 0.118100
3 Issued stores 29524944 0.118100
19 Graduated stores 11248768 0.044995
22 Quadwords written

back from primary
data cache

2475040 0.038116

21 Graduated floating
point instructions

7787744 0.031151

Table 3. Some counter values and typical time extracted
from perfex -a -x -y output

Table 4 shows that cache utilization, especially L2, has been
improved greatly either by manually padding the arrays or by
using a high level of optimization -O3 of the compiler. The
location in the original code where the bad cache performance
(compiled with -O0) occurs can be detected using ssrun. The
results of three experiments are given below to demonstrate
how one uses the SpeedShop data to draw some conclusions.
These experiments are (1) fpcsamp, (2) ideal, and (3) dsc_hwc
(hardware counter 26 for secondary data cache misses). The
outputs from prof are quite extensive. For clarity, only data
that are relevant to the discussion below are included.

-O0 -O3 -O0-
manual-
padding

L1 Data Cache Misses 4,348,624 20,880 361,888
L1 Cache Line Reuse 8.37 1572.17 114.06
L1 Cache Hit Rate 0.89 1.0 0.99
L2 Data Cache Misses 4,178,336 16 81,168
L2 Cache Line Reuse 0.04 129.50 3.46
L2 Cache Hit Rate 0.039 0.99 0.78
MFLOPS 2.97 24.27 15.56

Table 4. Comparison of L1 cache, L2 cache and MFLOPS
performances

(1) prof -l L2_cache_thrash.fpcsamp.m755026

Function list, in descending order by time
secs function (dso: file, line)
2.451 l2_cache_thrashing
 (L2_cache_thrash: L2_cache_thrash.f, 1)
0.370 _RANF_4 (libfortran.so: random.c, 154)
Line list, in descending order by function-time and then line
number
secs function (dso: file, line)
2.339 l2_cache_thrashing
 (L2_cache_thrash: L2_cache_thrash.f, 16)

In its "function list" output, it is shown that the program
spends 0.370 seconds on calling the random number generator
function. It spends 2.451 seconds on the rest of the main
program. From the "line list" output, it shows that most time is
spent on line 16 (see program in Appendix A) of this program.

(2) prof L2_cache_thrash.ideal.m1838173

Function list, in descending order by exclusive ideal time
secs function (dso: file, line)
0.478 L2_cache_thrashing
 (L2_cache_thrash: L2_cache_thrash.f, 1)
0.340 _RANF_4 (libfortran.so: random.c, 154)

From this output, it is shown that "ideally", the program,
excluding calling the random number generator, should take
about 0.478 seconds. This is much shorter than the 2.451

0

0.5

1

1.5

2

2.5

3

O0 O1 O2 O3 O0-pad

7

seconds actually used. Thus, it indicates that the program can
be improved significantly.

(3) prof -l L2_cache_thrash.dsc_hwc.m1225967

Function list, in descending order by counts
counts % function (dso: file, line)
4159250 100.0 L2_cache_thrashing
 (L2_cache_thrash: L2_cache_thrash.f, 1)
Line list, in descending order by function-time and then line
number
counts % function (dso: file, line)
4158988 100.0 L2_cache_thrashing
 (L2_cache_thrash: L2_cache_thrash.f, 16)

This output shows that 100% of L2 cache misses occur in
line 16 of the program.

5. Cache Coherency and Cache Contention

In a parallel program, a data can be accessed simultaneously
by multiple processors. Since the CPU only reads and writes
data in its cache, every CPU that accesses the same data has a
copy in its own cache. Thus, multiple copies of this data are
available from different caches of different processors. If no
CPU that has a copy modifies the data (i.e., CPU reads but not
writes), each CPU simply uses its own cached copy and no
interruption occurs. However, if one CPU modifies a shared
data or a shared cache line, this CPU has to become the
exclusive owner of the cache line. As a consequence, the copies
in the other CPUs become 'invalid' immediately and these
CPUs are prevented from using their invalid copies. The new
value for this data has to be fetched from the CPU that 'owns'
the data after it finishes updating the data. The coordination and
synchronization to ensure that all cached copies of data are true
reflections of the data in main memory is called cache
coherency. On the Origins, maintaining cache coherency is the
responsibility of the 'hub' located outside of the CPU.

Cache contention is a phenomenon that multiple CPUs
alternatively and repeatedly update the same cache line. Thus
each CPU has to become the exclusive owner of that cache line
in turn. This will slow down performance dramatically. Data
that are mostly read and rarely written do not cause cache
contention for parallel programs.

There are two variations of cache contention. The first one is
called memory contention in which two or more CPUs try to
update the same variables. The second one is called false
sharing in which the CPUs repeatedly update different variables
that occupy the same cache line. Memory contention usually
occurs due to the algorithm of a program. Fixing it may require
changing the algorithm. In contrast, false sharing usually occurs
unintentionally and can be fixed quite easily.

5.1 Detecting Cache Contention

a. performance does not scale
b. event counter 31 - store or prefetch-exclusive to shared

block
c. event counter 29 - external invalidation hits in Scache

When the scaling of a code is poor, one first checks if it is
caused by cache contention. The R10000 and R12000 event
counter 31 is the best indicator of cache contention between
CPUs. The CPU that accumulates a high count of event 31 is
repeatedly modifying shared data. Other CPUs that have a copy
of the modified cache line will be sent invalidations. Another
good indicator of cache contention is event 29. The CPU that
produces a high count of event 29 is being slowed because it is
using shared data that is being updated by a different CPU. The
CPU doing the updating generates event 31.

To get estimates of the counts for event 29 and 31, use
perfex -a -mp ./a.out (or perfex -a -x -y -mp ./a.out)

One can get more accurate counts of these two events by
using, for example,

perfex -e 29 -mp ./a.out
or
setenv SPEEDSHOP_HWC_NUMBER 29
setenv SPEEDSHOP_HWC_COUNTER_OVERFLOW 99
ssrun -exp prof_hwc ./a.out
prof a.out.prof_hwc.m1234 > prof.m1234.output

5.2 False Sharing Example

In appendix B, a sample program that exhibits false sharing
behavior is provided. This program is modified from example
8.5 of the SGI document "Origin 2000 and Onyx Performance
Tuning and Optimization Guide". When this program is
executed with 4 processors, in the subroutine sum85 of this
program, s(1) is updated by processor 1 while at the same time,
s(2) is being updated by processor 2, and so on. Since the size
of s is only 4 words, all elements of s are likely to reside in the
same cache line (both in L1 and L2 caches). Thus, each
processor has to gain exclusive ownership of this cache line
when updating s(i), resulting in false sharing.

5.2.1 Performance

Figure 2 shows the performance of this code running with 1,
2 and 4 processors (R10000 CPU, 250MHz with 4MB L2 cache
on an O2K machine). The performance is measured as the
'wall-time' (in seconds, reported by t3 in the program) spent on
executing the subroutine where s(i) is updated. As seen in this
figure, when the code is compiled with -O0 -mp, the code runs
slower with 2 or 4 CPUs compared to 1 CPU! The same
behavior is seen when the code is compiled with -O1 -mp.

8

Figure 2(a) Figure 2(b)

Figure 3(a) Figure 3(b)

Fortunately, false sharing is fixed for this program by the
compiler when -O2 or -O3 is used. As shown in figure 2(a) and
figure 2(b), with -O2 or -O3, the performance with 2 CPUs or
4 CPUs is better than with 1 CPU. In addition, the performance
now scales with the increased number of CPUs used.

Fixing false sharing for this program manually is also quite
straight-forward. One can either rewrite the code such that a
temporary variable, private to each thread, is used in the place
of s(i) or change array s(4) to s(32,4) and replace s(i) with s(1,i)
in the subroutine. This second approach provides a padding of
32 words between s(1,1) and s(1,2), where s(1,1) is to be
updated by processor 1 and s(1,2) is to be updated by processor
2. Since s(1,1) and s(1,2) are now 32 words apart, they will not
reside in the same cache line for either L1 or L2 cache, thus
preventing false sharing. Using this second approach, figure
3(a-b) shows the performance of the modified code at -O0, -
O1, -O2 and -O3 when 1, 2 or 4 CPUs are used. The
performance at -O2 and -O3 is almost identical to the original
code. But the performance at -O0 and at -O1 with 2 or 4 CPUs
has not only improved significantly but also shows proper
speedup with the increased number of CPUs used.

5.2.2 Diagnosis

For the original program, the fact that performances do not
scale gives an indication that false sharing is occurring (with -
O0 and -O1). This can be further validated by using event
counters 29 and 31. As a demonstration, 'perfex -e 29 -mp' and
'perfex -e 31 -mp' are used to obtain the counts for each thread.

Table 5 shows the comparisons of these counter values of the
original program (with false sharing) and the modified program
(no false sharing). The results shown here are obtained when
the two programs are compiled with -O0.

False Sharing N o F a l s e
Sharing

1 CPU 4 CPUs 1 CPU 4 CPUs
Counter 29 3,766 482,491 4,643 1,638

487,530 1,796
539,327 2,060
516,084 2,338

Counter 31 0 991,489 0 112
1,020,035 110
479,600 106
535,563 721

 Table 5. Counts of event 29 and event 31 for the false
sharing example

For event counter 29, the values obtained for each thread of
the 4 CPU run of the original program (with false sharing) are
much larger than that obtained with 1 CPU. They are also much
larger than those obtained at both 1 CPU and 4 CPU runs of the
modified program with no false sharing. For event counter 31,
the values of the two 1 CPU runs (one for the original and one
for the modified program) are both zero. The values for each
thread of the 4 CPU run of the original program (with false
sharing) are much larger than those obtained for each thread of
the 4 CPU run of the modified program (no false sharing).
Thus, the much larger counts of events 29 and 31 when
multiple processors are used for the original program provide
definitive proof that false sharing is indeed occurring.

6. Non-Uniform Memory Access (NUMA)

For a cache-friendly parallel program, memory requests are
satisfied primarily by cache. Thus, the performance is not
determined by the actual location of data in physical memory.
For non-cache-friendly programs, on the contrary, memory
requests are satisfied by main memory, and the placement of
data in memory plays a crucial role in performance.

On the Origins, the memory access model used is shared
memory NUMA model. In this model the memory is physically
distributed amongst the processors, but is globally addressable.
This means that a processor can access data that reside in the
memory of a different node. The memory is shared, but access
time will differ depending on whether the requested memory
address is local or remote to the requesting processor. Remote
memory access requires communication through the inter-

0

5

10

15

20

25

1 2 3 4

-O0 -O1

-O2 -O3

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4

-O2 -O3

0

5

10

15

20

25

1 2 3 4

-O0 -O1 -O2 -O3

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4

-O2 -O3

9

connect network and thus takes additional time. For the O2Ks,
as shown in Table 6, the latency to load a cache line from local
memory is about 485ns. If the data has to be accessed from a
remote memory that is n-hops away (through n-routers), the
latency is about (485+n*100) ns. The values listed in Table 6
do vary depending on the topology and hardware of the
memory and inter-connect systems. Nevertheless, it shows that
the farther the data, the longer it takes to access it. Tuning non-
cache-friendly parallel programs on the Origins often means
optimizing the data placement in physical memory to achieve
'memory locality' such that the memory access time is
minimized for each process.

NCPUS Maximum
Route Hops

Latency

1 or 2 0 485 ns
3 or 4 1 585 ns
5-8 2 685 ns
9-16 3 785 ns
17-32 4 885 ns
33-64 5 985 ns
Table 6. Max hops and latency

6.1 Page

For virtual memory systems such as the Origins, memory is
allocated by the operating system to a user's program in units of
a page. The default page size on the Origins is 16KB. However,
a system can be configured to set aside a certain number of
larger pages (ex: 64KB, 256KB, 1MB, 4MB, etc. defined in
/var/sysgen/stune) to be used by programs that request them.
The command 'osview' (select option 3) allows you to see how
many pages of each large page size (>16KB) are available (not
being used yet) in each node.

A frequently overlooked concept regarding pages is that a
page is the "smallest continuous memory" that the operating
system can allocate to your program. For example, if the size of
an array is exactly n pages, the array elements may be spread
among n pages or n+1 pages depending on whether the
allocation of this array starts at the beginning of a page. These n
or n+1 pages can not be split and allocated among the memory
of more than n or n+1 nodes since only a 'whole' page can be
allocated in memory. However, the array can still be accessed
by as many processors as desired (ex: >> 2n processors on O2K
or >> 4n on O3K). In this circumstance, the performance will
not scale beyond 2n processors on O2K or 4n processors on
O3K if the program is memory intensive.

6.2 Data Placement

For parallel programs, memory locality management (i.e.,
placing data in or near the local memory of the CPU that needs
these data) is an important factor to achieve good parallelism
(speedup and scalability). The IRIX operating system is capable
of taking care of many memory locality needs automatically.

When necessary, users can fine-tune data placement by (i)
choosing a specific data placement policy through MP library

environment variables, (ii) enabling page migration, (iii) adding
certain compiler directives in the program, (iv) using the dplace
tool, and (v) adding runtime calls to specific library routines. In
the following, the two most common approaches, namely, using
the first touch placement policy and the round-robin placement
policy are described.

The default data placement policy on the Origins is 'first
touch placement'. With this policy, memory for a page is
allocated in the node whose CPU(s) first touches this page. If
this is not possible, this page is allocated in a node as close as
possible to the CPU that first touches the page. This placement
policy is usually good for programs that exhibit good locality to
a processor.

A common practice of initializing arrays by a single CPU
with the first touch placement policy often creates bottlenecks
for the subsequent computational crunch. This is due to the fact
that (1) memory references by most other CPUs will be non-
local and (2) traffic to the memory of the single node
containing the arrays is jammed by the requests from many
CPUs. A simple remedy is to parallelize the initialization step
so that data can be distributed to the memory of many CPUs
that first touch each page.

With round-robin placement, pages are distributed to
memory in many nodes in a round-robin fashion. The benefits
of this placement policy are two-fold. First, data will be
distributed 'randomly' (though not optimal) and thus will be
good for programs where all CPUs tend to access all data
equally. Second, memory access will not be targeted to a single
node thus avoiding a bottleneck.

To use round-robin placement policy, no modification to the
code is required. One simply sets the following environment
variable before executing the program:

setenv _DSM_ROUND_ROBIN

6.3 Quiz

Assume on an O2K, there are two CPUs in each node and on
an O3K, there are four CPUs in each node. The default page
size is 16KB per page.

(1) Using an O2K machine, if the size of array a is 48KB, in
the following program, how would array a be allocated in
memory if one sets
setenv OMP_NUM_THREADS 3?

real a(48KB)
!$OMP PARALLEL DO
do I=1,n
initialize a(i)
end do

(2) If everything is same as (1) except one sets
setenv OMP_NUM_THREADS 4, how would array a
be allocated in memory?

(3) If everything is same as (1) except that an O3K machine is
used, how would array a be allocated in memory?

10

(4) If everything is same as (1) except that the page size has
been changed to 64KB per page, how would array a be
allocated in memory ?

(5) If everything is same as (1) except that the OpenMP
directive in the program is removed and one then sets
setenv _DSM_ROUND_ROBIN, how would array a be
allocated in memory ?

6.4 Detecting Memory Placement Problem

a. Poor scaling
b. dlook
c. dsm_home_threadnum
d. ssrun -numa

One would suspect memory placement problems if
everything else (ex: cache contention, load imbalance, etc.) has
been checked and fixed and yet scaling is still poor. A few tools
are available for examining memory placement. The tool dlook
provides an easy way to examine how data (stack and heap data
with page size information) are placed when processes exit. If
sampling is enabled, (by using - sample n), data is also
displayed every n seconds. To obtain a dlook output, use the -
out option:

dlook -out dlook_output ./a.out

In addition to dlook, one can obtain more detailed
information about data placement by using the
dsm_home_threadnum() intrinsic within the program. This
function takes an address as an argument, and returns the
number of the CPU in whose local memory the page containing
that address is stored. It is used in Fortran as follows:

integer dsm_home_threadnum
numthread = dsm_home_threadnum(array(i))

Since two CPUs are connected to each node of an O2K and
they share the same memory, dsm_home_threadnum returns the
lower CPU number of the two running on the node with the
data. Note that the numbering of CPUs reported by
dsm_home_threadnum is relative to the program, not the
number of absolute physical CPU. The benefit of using
dsm_home_threadnum() over dlook is that one can find out
where each specific data is stored, and with additional
engineering of the code, which process is accessing this data.
The drawback is that one has to instrument the code manually
and it is non-trivial to analyze the information obtained.

In the past, no profiling tool would definitively inform you
that poor performance of a code is caused by poor data
placement. In the most recent release of SpeedShop (version
1.4.3), a new experiment type (ssrun -numa) is provided that
allows much easier diagnosis of memory placement problems.
The output of this experiment reports the percentage of remote
memory access (number of remote memory accesses/total
memory access sampled) and the average cc-NUMA routing
distance. To use this experiment, do, for example:

ssrun -numa ./a.out
prof a.out.numa.m1234 > a.out.numa.m1234.out

6.5 Memory Placement Example

In appendix C, a sample program is provided for examining
the performance of three different memory placement
approaches. This program is modified from example 8-7 of the
SGI document "Origin 2000 and Onyx Performance Tuning
and Optimization Guide".

The three different approaches are:

(a) Use the program in appendix C as is. The initialization loop
is not parallelized.

(b) Use the program in appendix C as is. The initialization loop
is not parallelized. However,

 "setenv _DSM_ROUND_ROBIN" is used during run-time.
(c) Modify the program in appendix C such that the

initialization loop is parallelized with OpenMP directive
"!$OMP PARALLEL DO private(i) shared(a,b,c,d)".
_DSM_ROUND_ROBIN is not set in this case.

The original and modified codes are compiled with -O3 -mp.
For each of the three approaches, the variable "niters" is read in
from stdin as 100. During run time, different numbers of CPUs
are used by setting "setenv OMP_NUM_THREADS n" where n
varies from 1 to 32. An O2K machine with 250MHz R10000
CPU, 4MB L2 cache, and 490MB memory per node is used
during execution.

Figure 4 shows the performances of each of the three
approaches. In figure 4(a), the real time (y-axis), in seconds as
obtained from the function dtime and reported as t2 in the
program, spent on the initialization is plotted as a function of n
(x-axis) set by OMP_NUM_THREADS (which is same as
NCPUS for the whole program). As seen in this figure, for the
first two approaches using the original code, the real time is
roughly the same no matter what the value of n is. This is
expected since only 1 processor is responsible for initializing
the arrays with either first-touch or the round-robin placement
policy. For the third approach where the initialization loop is
parallelized, the time spent on initialization decreases gradually
as more processors are added.

In figure 4(b), for each of the three approaches, the real time
(y-axis), reported as t3 in the program, spent on real work is
plotted as a function of n (x-axis) set by
OMP_NUM_THREADS. For the first approach, where data are
most likely localized to the node whose CPU first touches all
pages, the performance is better using 2 CPUs than 1 CPU.
This is because the memory references are still local for the two
CPUs in a single node. However, increasing the number of
CPUs beyond 2 does not decrease the wall-time any more since
memory references will be non-local for any CPUs other than
the first two.

For the second approach, data are placed in the memory of
many nodes in a round-robin fashion. For this program, as seen
in figure 4(b), the wall-time spent on real work decreases as

11

more CPUs (and thus, more memory in different nodes are
available for data placement) are added. Similar behavior is
seen for the third approach. In addition, the performances using
the third approach are better than the second due to more

optimum data placement.

 Figure 4(a) Figure 4(b)

7. Conclusion

Code optimization and parallelization on the Origins as well
as other parallel systems is a multi-faceted task. Understanding
the few basic issues described in this paper is essential for
building a solid foundation and for easier transition to learning
other related subjects. Training or workshops provided by
vendors or others are good sources for getting an overview of
many relevant topics. However, attending these sessions is
usually not adequate. For the Origins, the SGI document
"Origin 2000 and Onyx Performance Tuning and Optimization
Guide" is a good reference to keep handy. Many examples
provided in this document are quite useful. In addition, it is
important to (1) do more hands-on experiments, and (2) when
things do not work "as expected", find out the cause(s) of the
"misbehavior". It is through these hands-on experiments and
thorough investigation that the author finds most effective in
learning to proceed with code optimization and parallelization
on parallel systems.

8. Acknowledgments

Support from the NASA Advanced Supercomputing Division
under contract numbers ARC320.000.2 and ARC330.000.2 is
acknowledged.

9. About the Author

Sherry Chang received her Ph.D. in Theoretical Chemistry
from the University of California at Berkeley in 1991. Before
joining NASA, she was a research scientist at the Molecular
Research Institute performing research in areas of quantum
chemistry, molecular dynamics and homology modeling of
biological systems. At present, she is a Scientific Consultant at
the NASA Advanced Supercomputing Division of NASA
Ames Research Center. E-mail: schang@nas.nasa.gov

10. Appendix

A. Cache Thrashing Sample Program

1 program L2_cache_thrashing
2
3! Arrays a, b, c, and d are all 4MB in size. Accessing a(i,j),
b(i,j)
4! c(i,j), and d(i,j) simultaneously causes L2_cache_thrashing
when
5! the size of L2 cache is either 4MB or 8MB
6! with 2-way set associativity
7
8 dimension a(1024,1024), b(1024,1024), c(1024,1024),
d(1024,1024)
9
10 call random_number(b)
11 call random_number(c)
12 call random_number(d)
13
14 do j=1,1024
15 do i=1,1024
16 a(i,j)=b(i,j)+c(i,j)*d(i,j)
17 end do
18 end do
19
20 write (12) a
21
22 stop
23 end

B. False Sharing Sample Program

program false_sharing
parameter (m=4,n=100000)
real a(n,m),s(m)
real*4 dtime,tarray(2)
t1=dtime(tarray)
do i=1,m
do j=1,n
a(j,i)=(i+j)/5000.0
end do
end do
t2=dtime(tarray)
do k=1,100
call sum85(a,s,m,n)
write (6,*) 'k= ',k
write (6,*) s
end do
t3=dtime(tarray)
print *, 'time on initialization = ', t2
print *, 'time on real work = ', t3
stop
end
subroutine sum85 (a,s,m,n)
integer m, n, i, j

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40

First-Touch-Serial-Initial

Round-Robin

First-Touch-Parallel-Initial

0

10

20

30

40

50

60

70

80

0 20 40

First-Touch-Serial-Initial

Round-Robin

First-Touch-Parallel-Initial

12

real a(n,m), s(m)
!$omp parallel do private(i,j), shared(s,a)
do i = 1, m
s(i) = 0.0
do j = 1, n
s(i) = s(i) + a(j,i)
enddo
enddo
return
end

C. Memory Locality Sample Program

program memory_locality
 integer i, j, n, niters
 parameter (n = 8*1024*1024,ndim = n+35)
 real a(ndim),b(ndim),c(ndim),d(ndim),q
 real*4 dtime,tarray(2)

 read *, niters
 print *, ' niters = ', niters

! initialization
 t1=dtime(tarray)
! comment 1
do i = 1, n
 a(i) = 1.0 - 0.5*i
 b(i) = -10.0 + 0.01*(i*i)
 c(i) = 2*i - 0.3
 d(i) = 0.5*i
 enddo
 t2=dtime(tarray)

! real work
 do it = 1, niters
 q = 0.01*it
!$omp parallel do private(i) shared(a,b,c,d,q)
 do i = 1, n
 a(i) = a(i) + q*b(i)
 c(i) = c(i) + d(i)
 a(i) = a(i) + sqrt(c(i))
 enddo
 call sub(a,b,ndim)
 enddo

 t3=dtime(tarray)
 print *, a(1), a(n), q
 print *, 'time on initialization = ', t2
 print *, 'time on real work =',t3
 end

 subroutine sub(a,b,ndim)
 real a(ndim), b(ndim)
 return
 end

