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Abstract

After replacing a Cray T90 by an SV1ex system at FZJ we observed variations in the
CPU time of user applications that were unexpectedly high. The paper describes details
of our observations, gives some information on the reasons for the performance
variations and outlines measures taken to reduce the observed effects. Components
involved in this process include the SV1ex memory hardware, system software and also
user application codes.

Introduction

In January 2002 FZJ replaced a Cray T90/10 and a Cray J90/16 by an SV1ex-1A system with the
following characteristics: 

16 CPUs 
500 MHz clock 
4 flops/clock per CPU 
256 KB cache per CPU 
32 GB shared memory 
2048 memory banks 
4x4 backplane 

Performance Observations

Single CPU performance measurements showed that the performance of the SV1ex CPUs is
comparable to the performance of T90 CPUs if the cache utilization is high (Fig 1). On the other



hand, if the data access pattern doesn’t allow for good cache reuse, the CPU performance drops
significantly due to memory bandwidth constraints. 

 

Fig. 1: Single CPU Performance

When the SV1ex system was taken into production soon after installation there were complaints
from users about great variations in CPU time. Users claimed to see variations in the range up to
factor 5. The variation of CPU time of user jobs was especially unpleasing, since job accounting is
essentially done on the basis of CPU time. Furthermore, there were situations were identical user
jobs reached their time limit in some runs but ran to completion in other runs. 

In order to evaluate the extent of the CPU time variations and to find out about the reasons we
decided to periodically run a probe job and plot the CPU time of the probe against the workload of
the SV1ex system (Fig. 2). The probe job exhibited indeed CPU time variations in the described
range. However, there was no clear correlation between the measured CPU time and the system
workload. 



 

Fig. 2: CPU Time Variations of Probe Job

Memory Benchmark

For further analysis we decided to use a kernel benchmark that specifically stresses memory and
cache and to run multiple copies of the benchmark on a dedicated system. The first observation was
that on a dedicated system as well as under normal production load there is a strong correlation
between CPU time and the number of memory conflicts per memory reference (Fig. 3). The
measurements were done with hpm (Hardware Performance Monitor, group 2). 

 

Fig. 3: CPU Time vs. Memory Conflicts



On a dedicated system the kernel benchmark loops were executed in 1 to 16 copies to produce
memory load proportional to the number of job copies. The various kernel loops exhibited a
different behavior with respect to CPU time and memory conflicts (Fig. 4): 
  

The ’cache’ loop exploits a 100% cache hit rate and thus doesn’t produce memory conflicts.
The resulting CPU time curve is a straight line independent on the number of job copies. 
The ’mem’ loop has a 0% cache hit rate and its CPU time increases by factor 2 from 1 to 16
job copies. 
The ’cachemix’ loop shows approx. 35% cache hit rate for memory loads, but contains a
significant number of memory stores that bypass the cache due to the write through cache
architecture of SV1ex. The CPU time raises by factor 4 from 1 to 16 job copies. 
The ’mix’ loop is a combination of the other three loops and thus shows a moderate increase
in CPU time (factor 1.6). 

 

Fig. 4: CPU Time of Benchmark Loops

A remarkable property especially of the ’cachemix’ curve in Fig. 4 is the great variation in CPU
time with peaks for 5 and 8 job copies e.g. These peaks hint at great variations in the CPU time for
identical jobs, since in Fig. 4 the curves have been plotted from randomly selected job copies, not
from the average CPU time of multiple runs. 

Fig. 5 depicts this observation in more detail. There are significant differences in the CPU time of
identical runs depending on the CPU numbering. When stepping from 4 to 5 job copies the CPU
time of two jobs increases by factor 2 while 3 jobs remain at the previous performance level.
Similar occurs when going from 5 to 6 job copies. 16 jobs finally exhibit a balanced performance at
a low performance level, however. 
  



 

Fig. 5: CPU Time Variation for ’cachemix’ Loop

Memory Architecture

The reason for the observed performance behavior can be found in the SV1ex memory architecture.
Fig. 6 shows the basic principal of the SV1ex memory with a 4x4 backplane. 4 CPU modules share
4 memory modules, so, in a fully populated system, 4 CPUs each share one memory module with
two sections. On memory loads each CPU can transfer data at a rate of approximately 3.5 GB/s.
Since one memory module is capable of delivering data at a rate of 6.4 GB/s, two CPUs can absorb
the entire memory bandwidth. On memory stores the situation is even worse, since the available
memory bandwith is only half the bandwidth of loads. 

 

Fig. 6: SV1ex-1A Memory Architecture

The memory bandwith that is available to a given CPU is furthermore dependent on the CPU



numbering on the module. Fig. 7 shows the CPU time measurements of the ’cachemix’ loop for 1,
2, and 4 copies. All jobs ran on CPUs in the same module. If just one job is run it requires 12 sec.
CPU time independent of the CPU’s location on the board. If four copies are run, the situation is
balanced as well (48 sec. for each job). If two jobs are run, however, the required CPU time
depends on the location of the involved CPUs. There are bad combinations (CPUs 0+1 or CPUs
2+3 with 24 sec. per job) and not so bad combinations like CPUs 0+2 or 0+3 e.g. For two jobs per
module there are no good and balanced combinations, however. 

 

Fig. 7: CPU Time Dependent on CPU Location

It is worthwhile noting that the Unicos kernel scheduler recognizes this situation and places jobs on
empty CPU modules if possible and - as of Unicos 10.0.1.1 - avoids bad CPU combinations, if there
are two jobs per module. 

User Codes

Unfortunately, the above results do not explain the observed CPU time variations during production
on a fully loaded system. Additional investigations revealed that high CPU time measurements in
our probe job were strongly correlated with the existance of one specific user job in the system
workload. 

Investigations showed that this job used stride 2048 memory access for a large number of array
computations (Fig. 8). 

      PARAMETER (NN=1024) 
      PARAMETER (WW=2*NN) 
      ... 
      REAL*8 EMA(WW,WW),EVE1(WW),ZEVE1(WW) 
      ... 
      DO 22 L1=M1+1,WW 
        VOLDA=VOLDA+EMA(M1,L1) 
        VOLDC=VOLDC+CMA(M1,L1) 
22    CONTINUE 
      ... 



      DO 52 L1=M1+1,WW 
        EMA(M1,L1)=EVE1(L1) 
        CMA(M1,L1)=CHIVE1(L1) 
52    CONTINUE 
      ... 
  

Fig. 8: User Code with Stride 2048 Memory Access

Since the SV1ex memory utilizes 2048 memory banks, the above code segment produces a
tremendous amount of memory bank conflicts. Different from the Cray T90 memory system e.g.
these conflicts not only slow down the originating program, but also all other jobs running in the
system. So, on Cray SV1ex systems program optimization has become of even greater importance
than before. 

 

Fig. 9: CPU Time Variations Before and After Program Optimization

Fig. 9 shows the CPU time variations of our probe job before and after the optimization of the user
code that caused the memory conflicts. It will be an issue for the future to ensure that no other job
in the system workload undermines the performance of the entire system. 
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