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SGI Developer Tools
Update

• Topics covered in this presentation
– Introduction to WorkShop and SpeedShop

– What are the current releases?

– Feature highlights of the current releases.

– Features scheduled in the next releases.

– Appendix with screen shots and examples
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SGI Developer Tools
Update

• Introduction to WorkShop and cvd
– WorkShop is collection of tools

• cvd - GUI based source level debugger

• dbx - command line source level debugger

• cvcov - coverage tool - what parts of my program are being
executed

• cvperf - performance analysis viewer

– cvd <executable> or dbx <executable>

– cvd mpirun -args -np 64 <mpi_executable>
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SGI Developer Tools Update

Introduction to WorkShop and cvd
– cvd features and capability

• OpenMP, MPI for single system image, pthreads,
shmem,  MP mixed codes

• Fortran (f90,f77), C++, C, Ada, mixed lang. codes

• o32, n32, and 64 bit ABI’s

• specialized views for source, data, instruction,
register information

• parallel view to control all or specific processes
and/or threads
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What are the current releases?

– Released Jan 8th, 2002

– WorkShop 2.9.1
• Download WS 2.9.1 from supportfolio - current patch 4531

– SpeedShop 1.4.3
• Download 1.4.3 from supportfolio -  current patch 4532

– dbx 7.3.3
• Download 7.3.3 from supportfolio - current patch 4530

– http://support.sgi.com/colls/patches/tools/relstream/index.html
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Feature highlights in the new
WorkShop/dbx release

– Visualizing arrays of pointers/derived types

– F90 debugging improvements

– Pthread debugging improvements

– Auto-dereferencing for pointers of simple types

– Improvements to the speed of execution of cvd

– Other Improvements (merge, other)

– Coverage tool improvements (cvcov)
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Feature highlights in the new
WS/dbx release

• F90 debugging improvements
– Array browser allows display of derived types

– All views can now display data declared outside a
F90 internal procedure while in the internal
procedure.

– Indexing Fortran90 pointer-arrays within a derived
type now works. For example, 'dt%array(i,j)’.

– Other problems have been fixed in the release and
in patch 4531 (WS) and 4530 (dbx).



9

Feature highlights in the new
WS/dbx release

• Pthread debugging improvement
– Stepping over pthread_create now has

consistent behavior.   Prior to the fix you could
get stuck in “Running state”

– Fixes to Multiprocess view (MPView).
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Feature highlights in the new
WS/dbx release

• Improvements - speed of execution of cvd

– Some key server routines were reworked to be
faster

– Raised the compiler optimization level in
building cvd

– Stepping over (next) is faster
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Feature highlights in the
new WS/dbx release

Other Improvements

• Due to merging cvd/dbx server
• Several cases closed that were fixed in one or the other

• 64 bit debugging improvements

• Common source base for fixing server problems.

•  Gui Area
• Double clicking from Trap Manager positions source

• Wide character WorldView fixes - can see comments

• Clearcase support
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Feature highlights in the new
WS/dbx release

WorkShop coverage tool improvements
(cvcov) - reports execution statistics.
– Improved C++ support (lang:std)

– Updated the default exclusion file

– Reduce cvcov memory leaks - purify,SS

– Improve cvcov speed of execution on large
appl.
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Update

WorkShop and dbx

Features planned for the next release.
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Features planned for the
next WS/dbx release.

• GUI data access improvements
– Single mouse action process & data navigation

– Reengineered Multiprocess Explorer (was MPView)

– Reengineered Data Explorer (was Structure Browser)

• OpenMP debugging improvements

• cvd/dbx memory usage improvements
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Features planned for the next
WS/dbx release.

• Process & data navigation across cvd
– One mouse action access to data

– Right mouse button down give default action

– Left or Right mouse button hold gives dynamic
menu

– Data display window for lightweight data
display (reusable or throw away)

– Reusable can access previous data panels
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Features planned for the next
WS/dbx release.

• Reengineered Multiprocess Explorer
– Show MPI rank in Multiprocess Explorer

– Optional viewing of information in
Mulitiprocess Explorer

• Reengineered Data Explorer
– Name and minimal type info list for selection

– Data navigation capabilities

– Hoping to add multiprocess/thread data
navigation
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Features planned for the next
WS/dbx release.

• Improved OpenMP support
– Show private data w/o frame changing to main

program and other improvements

• No significant memory growth in cvd/dbx
on long sessions and re-runs
– New garbage collection algorithm to improve

memory usage

– String table re-engineering
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SpeedShop
SGI Performance Analysis Tools
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SGI Developer Tools Update

Introduction to SpeedShop and cvperf
• SpeedShop is collection of performance analysis

tools
– ssrun - SpeedShop experiment driver

– cvperf - GUI performance analysis viewer

– prof - text based performance analysis viewer

• ssrun -experiment <executable>

• mpirun -np 4 ssrun -mpi <mpi_executable>

• cvperf <experiment_file>
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Current release Information

SpeedShop 1.4.3

– Released Jan 8th, 2002

– Is delivered as part of ProDev WorkShop 2.9.1

– Download 1.4.3 from supportfolio

– Current patch 4532
– http://support.sgi.com/colls/patches/tools/relstream/index.html
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SpeedShop 1.4.3

SpeedShop 1.4.3 introduces two new
performance experiments:
– MPI Experiment (“ssrun –mpi”)

– NUMA Experiment (“ssrun –numa”)

Includes numerous bug fixes
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New MPI experiment

MPI experiment answers four basic questions:
– Which MPI function was called?

– Who made the call?

– Where was the call made? (to the source line)

– How long did the call take?
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New NUMA experiment

NUMA experiment answers these questions:
– How often do I access memory on my own

NUMA node?

– Where am I accessing memory from a remote
NUMA node?

– Are my placement directives working?
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SpeedShop

Features planned for the next release.
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SGI Developer Tools Update

SpeedShop features for next release
•  R16k Support

•  Improved by pthread data collection

•  Pthread data by thread in cvperf

•  Multiple starts and stops of data collection

•  MPI and NUMA experiment improvements

•  Bug fixes and other improvements
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Questions?

SGI Developer Tools Update

Jim Galarowicz

jeg@sgi.com
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Developer Tools Appendix

SGI Developer Tools Update

Additional Slides

showing features discussed in the

Tools Presentation
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SGI Developer Tools Update

WorkShop

Appendix Information
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Feature highlights in the current
WorkShop/dbx release

• WorkShop coverage tool improvements
(cvcov) - reports execution statistics.
– Improved C++ support (lang:std)

– Updated the default exclusion file

– Reduce cvcov memory leaks - purify,SS

– Improve cvcov speed of execution on large
appl.
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Feature highlights in the current
WorkShop/dbx release

• Coverage tool usage (cvcov)
– cvcov runinstr a.out

– cvcov -mktest -cmd “a.out -d”

– cvcov runtest test0000

– cvcov lssource funcname test0000   . List of
annotated src

– cvcov lssum test0000        . Summary of coverage

– cvcov lscall test0000          . Lists function call graph
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Feature highlights in the current
WorkShop/dbx release

Coverage tool usage (cvcov)
cvcov runinstr hashTest

runinstr command: /usr/sbin//cvinstr -coverage
/usr/WorkShop/usr/lib/WorkShop/Tester/default_instr_file  -addlibs
libss.so:libssrt.so -directory
/data/clink/a01/gala/pv_bugs/swift_probs/ver##0 "hashTest"

        instrumenting /lib32/rld

        instrumenting /usr/lib32/mips3/libssrt.so

        instrumenting /usr/lib32/mips3/libss.so

        instrumenting /usr/lib32/mips3/libc.so.1

        instrumenting hashTest

cvcov: Instrument "hashTest" of version "0" succeeded.

cvcov mktest -cmd hashTest
cvcov: Made test directory:

"/data/clink/a01/gala/pv_bugs/swift_probs/test0000"
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Feature highlights in the current
WorkShop/dbx release

Coverage tool usage (cvcov)
cvcov runtest test0000

cvcov: Running test
"/data/clink/a01/gala/pv_bugs/swift_probs/test0000" ...

/data/clink/a01/gala/pv_bugs/swift_probs//ver##0/hashTest_Instr

found: abc with value: 0

found: def with value: 1

found: alsdjk with value: 2

found: Smith with value: 3

found: june with value: 4

found: smith with value: 3

found: June with value: 4

Key: abc, value: 0
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Feature highlights in the current
WorkShop/dbx release

Coverage tool usage (cvcov)
cvcov lssum test0000

Coverages          Covered     Total       % Coverage
Weight

--------------------------------------------------------------------------

Function                8           39          20.51%        0.400

Source Line        71          446         15.92%        0.200

Branch                10          239          4.18%         0.200

Arc                      20          176         11.36%        0.200

Block                  75          624         12.02%        0.000

Weighted Sum                               14.50%        1.000
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Feature highlights in the current
WorkShop/dbx release

Coverage tool usage (cvcov)
cvcov lsfun test0000

Functions       Files   Counts

---------------------------------------

is_ival isIval.c        0

is_rval isRval.c        0

make_hashtable  serv.c  1

free_hashtable  serv.c  1

insert_in_hash  serv.c  7

find_in_hash    serv.c  7

for_all_in_hash serv.c  1

hashUC  serv.c  14
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Feature highlights in the current
WorkShop/dbx release

Coverage tool usage (cvcov)
 cvcov lssource for_all_in_hash test0000

Counts  Source

--------------------------------------------------------------------

        void for_all_in_hash(Hash* ht, void (*func)(const char *, void
*))

1       {

          int   ja;

          Link* link;

257       for (ja = 0; ja < ht->num_buckets; ja++)

257         for (link = ht->buckets[ja].link; link; link=link->next )

5             (*func)(link->key, link->adt);

1       }
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Feature highlights in the
current WorkShop/dbx

release

• Visualizing arrays of pointers/derived types
– Bring up Array Visualizer and enter array name.

– Double click on the entry you are interested in.

– Structure or derived type is displayed in the
structure browser.

– Example on next slide.
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Feature highlights in the new
release

• Visualizing arrays of pointers/derived
types

• Example page.
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Features planned for the next
WS/dbx release.

Data navigation across cvd views
– One mouse action access to data

– Right mouse button down give default action

– Left or Right mouse button hold gives dynamic
menu

– Data display window for lightweight data
display (reusable or throw away)

– Reusable can access previous data panels
– Example on next slide



39

Features scheduled in the next
cvd/dbx release

• Data navigation across cvd views
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Features scheduled in the next
cvd/dbx release

• Display here
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Features planned for the next
WS/dbx release.

Reengineered Multiprocess Explorer
– Show MPI rank in Multiprocess Explorer (was

MPView)

–  More readable Multiprocess Explorer

Reengineered Data Explorer View
– Name and minimal type information list for

selection

– Data navigation capabilities

– Hoping to add multiprocess/thread data navigation
– Example on next slide
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Features planned for the next
cvd/dbx release.

• Reengineered Data Explorer View
– Show Data Explorer example here.
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SGI Developer Tools
Update

SpeedShop

Appendix Information
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What Is SpeedShop?

• A collection of tools to determine:
– Where is your application’s time spent?

– How is your application’s time spent?

– What are your application’s bottlenecks?

Your app

CPU usage

Your app
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Why Use SpeedShop?

• It will help you:
– Minimize application development time

– Eliminate bottlenecks and bugs

– Maximize your application’s overall
performance

• How invoke SpeedShop:
– ssrun -<expr-type> <executable>
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What SpeedShop will tell
you?

• SpeedShop reports statistical data
–Function name, source file name, line number,

and a statistical data that depends on the
experiment you’re running

– It includes system functions

• Cvperf will let you browse, via a GUI, into
your code

• Prof will gives a text based quick report
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SpeedShop 1.4.3

SpeedShop 1.4.3 introduces two new
performance experiments:
– MPI Experiment (“ssrun –mpi”)

– NUMA Experiment (“ssrun –numa”)

Includes numerous bug fixes
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New MPI experiment

MPI experiment answers four basic questions:
– Which MPI function was called?

– Who made the call?

– Where was the call made? (to the source line)

– How long did the call take?
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MPI Experiment Example

How do I use it?
– NAS CG Parallel Benchmark (MPI)

– Origin 2000 with 16 300Mhz R12000

– mpirun -np 4 ssrun -mpi cg.A.4

% mpirun -np 4 ssrun -mpi cg.A.4
...
% prof cg.A.4.mpi.f1384250
-------------------------------------------------------------------------
SpeedShop profile listing generated Wed Jan 23 13:33:52 2002
...
-------------------------------------------------------------------------
Summary of MPI tracing data (mpi)--
                          5044: Total Traced MPI calls
-------------------------------------------------------------------------
Callee list, in descending order by time taken in MPI call
-------------------------------------------------------------------------
   Seconds      Calls  MPI Function

     4.602       1680  MPI_Wait
     1.046          1  MPI_Finalize
     0.374       1680  MPI_Send
     0.204       1680  MPI_Irecv
     0.061          1  MPI_Init
     0.000          1  MPI_Reduce
     0.000          1  MPI_Barrier
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MPI Example (Continued)

-------------------------------------------------------------------------
Call site list, in descending order by time taken in MPI call
-------------------------------------------------------------------------
   Seconds      Calls  MPI Function              Function (dso: file, line)

     2.933        400  MPI_Wait                  conj_grad (cg.A.4: cg.f, 1177)
     1.409        400  MPI_Wait                  conj_grad (cg.A.4: cg.f, 1150)
     1.046          1  MPI_Finalize              cg (cg.A.4: cg.f, 571)
     0.180        400  MPI_Send                  conj_grad (cg.A.4: cg.f, 1170)
     0.169        400  MPI_Send                  conj_grad (cg.A.4: cg.f, 1147)
     0.133        400  MPI_Irecv                 conj_grad (cg.A.4: cg.f, 1161)
     0.099         16  MPI_Wait                  conj_grad (cg.A.4: cg.f, 1059)
     0.069         16  MPI_Wait                  conj_grad (cg.A.4: cg.f, 1361)
     0.061          1  MPI_Init                  initialize_mpi (cg.A.4: cg.f, 594)
     0.048        400  MPI_Irecv                 conj_grad (cg.A.4: cg.f, 1139)
     0.041         16  MPI_Wait                  conj_grad (cg.A.4: cg.f, 1333)
     0.037        400  MPI_Wait                  conj_grad (cg.A.4: cg.f, 1275)
     0.016        400  MPI_Wait                  conj_grad (cg.A.4: cg.f, 1221)
     0.013        400  MPI_Irecv                 conj_grad (cg.A.4: cg.f, 1209)
     0.008         16  MPI_Send                  conj_grad (cg.A.4: cg.f, 1354)
     0.006         16  MPI_Send                  conj_grad (cg.A.4: cg.f, 1330)
     0.006        400  MPI_Irecv                 conj_grad (cg.A.4: cg.f, 1264)
     0.005        400  MPI_Send                  conj_grad (cg.A.4: cg.f, 1217)
     0.005        400  MPI_Send                  conj_grad (cg.A.4: cg.f, 1272)
     0.002         16  MPI_Irecv                 conj_grad (cg.A.4: cg.f, 1345)
     0.001         16  MPI_Irecv                 conj_grad (cg.A.4: cg.f, 1322)
     0.000         16  MPI_Irecv                 conj_grad (cg.A.4: cg.f, 1386)
     0.000          1  MPI_Reduce                cg (cg.A.4: cg.f, 509)
     0.000         16  MPI_Irecv                 conj_grad (cg.A.4: cg.f, 1048)
     0.000         15  MPI_Wait                  cg (cg.A.4: cg.f, 474)
     0.000         16  MPI_Send                  conj_grad (cg.A.4: cg.f, 1056)
     0.000         16  MPI_Send                  conj_grad (cg.A.4: cg.f, 1394)
     0.000         15  MPI_Irecv                 cg (cg.A.4: cg.f, 463)
     0.000         15  MPI_Send                  cg (cg.A.4: cg.f, 471)
     0.000          1  MPI_Barrier               cg (cg.A.4: cg.f, 411)
     0.000         16  MPI_Wait                  conj_grad (cg.A.4: cg.f, 1397)
     0.000          1  MPI_Wait                  cg (cg.A.4: cg.f, 376)
     0.000          1  MPI_Irecv                 cg (cg.A.4: cg.f, 365)
     0.000          1  MPI_Send                  cg (cg.A.4: cg.f, 373)
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New NUMA experiment

NUMA experiment answers these questions:
– How often do I access memory on my own

NUMA node?

– Where am I accessing memory from a remote
NUMA node?

– Are my placement directives working?
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NUMA experiment:
How does it work?

NUMA experiment does these items:

•  Statistically samples memory accesses

•  Looks for a “computable” memory access

•  Stores “numa info” for each sample
– see SpeedShop portion of Appendix for additional

information
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NUMA Example

• How do I use it?
– NAS CG Parallel Benchmark (OpenMP)

– Origin 2000 with 16 300Mhz R12000

% setenv OMP_NUM_THREADS 4
% ssrun -numa cg.A
...
% prof -source cg.A.numa.p1350994
-------------------------------------------------------------------------
SpeedShop profile listing generated Wed Jan 23 13:18:40 2002
...
-------------------------------------------------------------------------
Summary of NUMA memory profiling data (numa)--
 Secondary cache D misses (26): Counter Name (Number)
                           100: Counter Average Overflow
                        101066: Sampled Memory Accesses
                         76615: Remote Memory Accesses
                        75.807: Percent Remote Memory Accesses
                         1.436: Average ccNUMA Routing Distance
-------------------------------------------------------------------------
Function list, in descending order by percent remote memory accesses
-------------------------------------------------------------------------
   Sampled     Remote    Pct Rmt    Avg Dist  Function (dso: file, line)

...
    100739      76465     75.904       1.437  conj_grad (cg.A: cg.c, 374)
...
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NUMA Example
-------------------------------------------------------------------------
Disassembly listing, annotated with NUMA memory profiling data
-------------------------------------------------------------------------
...
conj_grad (cg.A: cg.c, 374):
...
429: /* rolled version */
430: #pragma omp for private(sum,k)
431: for (j = 1; j <= lastrow-firstrow+1; j++) {
432:             sum = 0.0;
433:     for (k = rowstr[j]; k < rowstr[j+1]; k++) {
434: sum = sum + a[k]*p[colidx[k]];
435:     }
436:             w[j] = sum;
437: }
438: 
...
[ 434] 0x100057fc 0x8c440000 lw a0,0(v0)
      ^------ 220 Sampled, 75.909% Remote, Avg Dist = 1.459 ------^
[ 434] 0x10005800 0x000420c0 sll a0,a0,3
[ 434] 0x10005804 0xd42d0000 ldc1 $f13,0(at)
      ^------ 85 Sampled, 68.235% Remote, Avg Dist = 1.306 ------^
[ 434] 0x10005808 0x02042021 addu a0,s0,a0
[ 434] 0x1000580c 0xd48e0000 ldc1 $f14,0(a0)
      ^------ 106 Sampled, 83.019% Remote, Avg Dist = 1.500 ------^
[ 434] 0x10005810 0x24210008 addiu at,at,8
[ 434] 0x10005814 0x24420004 addiu v0,v0,4
[ 434] 0x10005818 0x4cee69e1 madd.d $f7,$f7,$f13,$f14
[ 434] 0x1000581c 0x12600046 beq s3,zero,0x10005938
[ 434] 0x10005820 0000000000 nop
[ 434] 0x10005824 0x16800698 bne s4,zero,0x10007288
[ 434] 0x10005828 0000000000 nop
[ 434] 0x1000582c 0x8c440000 lw a0,0(v0)
      ^------ 351 Sampled, 74.074% Remote, Avg Dist = 1.416 ------^
[ 434] 0x10005830 0xd4220008 ldc1 $f2,8(at)
      ^------ 582 Sampled, 77.491% Remote, Avg Dist = 1.474 ------^
[ 434] 0x10005834 0xd4230000 ldc1 $f3,0(at)
[ 434] 0x10005838 0x000420c0 sll a0,a0,3
[ 434] 0x1000583c 0x8c430004 lw v1,4(v0)
      ^------ 57 Sampled, 56.140% Remote, Avg Dist = 1.105 ------^
...
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NUMA Experiment Notes &
Caveats

– Only supported on Origin 2000/3000

– No GUI available (CVPERF not supported),
only prof

– Storage requirements can be excessive
(32 bytes per sample)

– Do other optimizations first!
• First Order: algorithm selection

• Second Order: algorithm implementation
details

• Third Order: NUMA placement


