
1

SGI Developer
Tools Update

Jim Galarowicz

Manager of Performance Tools and
Debugger Tools Group

2

SGI Developer Tools
Update

• Topics covered in this presentation
– Introduction to WorkShop and SpeedShop

– What are the current releases?

– Feature highlights of the current releases.

– Features scheduled in the next releases.

– Appendix with screen shots and examples

3

SGI Developer Tools
Update

• Introduction to WorkShop and cvd
– WorkShop is collection of tools

• cvd - GUI based source level debugger

• dbx - command line source level debugger

• cvcov - coverage tool - what parts of my program are being
executed

• cvperf - performance analysis viewer

– cvd <executable> or dbx <executable>

– cvd mpirun -args -np 64 <mpi_executable>

4

SGI Developer Tools Update

Introduction to WorkShop and cvd
– cvd features and capability

• OpenMP, MPI for single system image, pthreads,
shmem, MP mixed codes

• Fortran (f90,f77), C++, C, Ada, mixed lang. codes

• o32, n32, and 64 bit ABI’s

• specialized views for source, data, instruction,
register information

• parallel view to control all or specific processes
and/or threads

5

6

What are the current releases?

– Released Jan 8th, 2002

– WorkShop 2.9.1
• Download WS 2.9.1 from supportfolio - current patch 4531

– SpeedShop 1.4.3
• Download 1.4.3 from supportfolio - current patch 4532

– dbx 7.3.3
• Download 7.3.3 from supportfolio - current patch 4530

– http://support.sgi.com/colls/patches/tools/relstream/index.html

7

Feature highlights in the new
WorkShop/dbx release

– Visualizing arrays of pointers/derived types

– F90 debugging improvements

– Pthread debugging improvements

– Auto-dereferencing for pointers of simple types

– Improvements to the speed of execution of cvd

– Other Improvements (merge, other)

– Coverage tool improvements (cvcov)

8

Feature highlights in the new
WS/dbx release

• F90 debugging improvements
– Array browser allows display of derived types

– All views can now display data declared outside a
F90 internal procedure while in the internal
procedure.

– Indexing Fortran90 pointer-arrays within a derived
type now works. For example, 'dt%array(i,j)’.

– Other problems have been fixed in the release and
in patch 4531 (WS) and 4530 (dbx).

9

Feature highlights in the new
WS/dbx release

• Pthread debugging improvement
– Stepping over pthread_create now has

consistent behavior. Prior to the fix you could
get stuck in “Running state”

– Fixes to Multiprocess view (MPView).

10

Feature highlights in the new
WS/dbx release

• Improvements - speed of execution of cvd

– Some key server routines were reworked to be
faster

– Raised the compiler optimization level in
building cvd

– Stepping over (next) is faster

11

Feature highlights in the
new WS/dbx release

Other Improvements

• Due to merging cvd/dbx server
• Several cases closed that were fixed in one or the other

• 64 bit debugging improvements

• Common source base for fixing server problems.

• Gui Area
• Double clicking from Trap Manager positions source

• Wide character WorldView fixes - can see comments

• Clearcase support

12

Feature highlights in the new
WS/dbx release

WorkShop coverage tool improvements
(cvcov) - reports execution statistics.
– Improved C++ support (lang:std)

– Updated the default exclusion file

– Reduce cvcov memory leaks - purify,SS

– Improve cvcov speed of execution on large
appl.

13

SGI Developer Tools
Update

WorkShop and dbx

Features planned for the next release.

14

Features planned for the
next WS/dbx release.

• GUI data access improvements
– Single mouse action process & data navigation

– Reengineered Multiprocess Explorer (was MPView)

– Reengineered Data Explorer (was Structure Browser)

• OpenMP debugging improvements

• cvd/dbx memory usage improvements

15

Features planned for the next
WS/dbx release.

• Process & data navigation across cvd
– One mouse action access to data

– Right mouse button down give default action

– Left or Right mouse button hold gives dynamic
menu

– Data display window for lightweight data
display (reusable or throw away)

– Reusable can access previous data panels

16

Features planned for the next
WS/dbx release.

• Reengineered Multiprocess Explorer
– Show MPI rank in Multiprocess Explorer

– Optional viewing of information in
Mulitiprocess Explorer

• Reengineered Data Explorer
– Name and minimal type info list for selection

– Data navigation capabilities

– Hoping to add multiprocess/thread data
navigation

17

Features planned for the next
WS/dbx release.

• Improved OpenMP support
– Show private data w/o frame changing to main

program and other improvements

• No significant memory growth in cvd/dbx
on long sessions and re-runs
– New garbage collection algorithm to improve

memory usage

– String table re-engineering

18

SpeedShop
SGI Performance Analysis Tools

19

SGI Developer Tools Update

Introduction to SpeedShop and cvperf
• SpeedShop is collection of performance analysis

tools
– ssrun - SpeedShop experiment driver

– cvperf - GUI performance analysis viewer

– prof - text based performance analysis viewer

• ssrun -experiment <executable>

• mpirun -np 4 ssrun -mpi <mpi_executable>

• cvperf <experiment_file>

20

Current release Information

SpeedShop 1.4.3

– Released Jan 8th, 2002

– Is delivered as part of ProDev WorkShop 2.9.1

– Download 1.4.3 from supportfolio

– Current patch 4532
– http://support.sgi.com/colls/patches/tools/relstream/index.html

21

SpeedShop 1.4.3

SpeedShop 1.4.3 introduces two new
performance experiments:
– MPI Experiment (“ssrun –mpi”)

– NUMA Experiment (“ssrun –numa”)

Includes numerous bug fixes

22

New MPI experiment

MPI experiment answers four basic questions:
– Which MPI function was called?

– Who made the call?

– Where was the call made? (to the source line)

– How long did the call take?

23

New NUMA experiment

NUMA experiment answers these questions:
– How often do I access memory on my own

NUMA node?

– Where am I accessing memory from a remote
NUMA node?

– Are my placement directives working?

24

SGI Developer Tools Update

SpeedShop

Features planned for the next release.

25

SGI Developer Tools Update

SpeedShop features for next release
• R16k Support

• Improved by pthread data collection

• Pthread data by thread in cvperf

• Multiple starts and stops of data collection

• MPI and NUMA experiment improvements

• Bug fixes and other improvements

26

Questions?

SGI Developer Tools Update

Jim Galarowicz

jeg@sgi.com

27

Developer Tools Appendix

SGI Developer Tools Update

Additional Slides

showing features discussed in the

Tools Presentation

28

SGI Developer Tools Update

WorkShop

Appendix Information

29

Feature highlights in the current
WorkShop/dbx release

• WorkShop coverage tool improvements
(cvcov) - reports execution statistics.
– Improved C++ support (lang:std)

– Updated the default exclusion file

– Reduce cvcov memory leaks - purify,SS

– Improve cvcov speed of execution on large
appl.

30

Feature highlights in the current
WorkShop/dbx release

• Coverage tool usage (cvcov)
– cvcov runinstr a.out

– cvcov -mktest -cmd “a.out -d”

– cvcov runtest test0000

– cvcov lssource funcname test0000 . List of
annotated src

– cvcov lssum test0000 . Summary of coverage

– cvcov lscall test0000 . Lists function call graph

31

Feature highlights in the current
WorkShop/dbx release

Coverage tool usage (cvcov)
cvcov runinstr hashTest

runinstr command: /usr/sbin//cvinstr -coverage
/usr/WorkShop/usr/lib/WorkShop/Tester/default_instr_file -addlibs
libss.so:libssrt.so -directory
/data/clink/a01/gala/pv_bugs/swift_probs/ver##0 "hashTest"

 instrumenting /lib32/rld

 instrumenting /usr/lib32/mips3/libssrt.so

 instrumenting /usr/lib32/mips3/libss.so

 instrumenting /usr/lib32/mips3/libc.so.1

 instrumenting hashTest

cvcov: Instrument "hashTest" of version "0" succeeded.

cvcov mktest -cmd hashTest
cvcov: Made test directory:

"/data/clink/a01/gala/pv_bugs/swift_probs/test0000"

32

Feature highlights in the current
WorkShop/dbx release

Coverage tool usage (cvcov)
cvcov runtest test0000

cvcov: Running test
"/data/clink/a01/gala/pv_bugs/swift_probs/test0000" ...

/data/clink/a01/gala/pv_bugs/swift_probs//ver##0/hashTest_Instr

found: abc with value: 0

found: def with value: 1

found: alsdjk with value: 2

found: Smith with value: 3

found: june with value: 4

found: smith with value: 3

found: June with value: 4

Key: abc, value: 0

33

Feature highlights in the current
WorkShop/dbx release

Coverage tool usage (cvcov)
cvcov lssum test0000

Coverages Covered Total % Coverage
Weight

--

Function 8 39 20.51% 0.400

Source Line 71 446 15.92% 0.200

Branch 10 239 4.18% 0.200

Arc 20 176 11.36% 0.200

Block 75 624 12.02% 0.000

Weighted Sum 14.50% 1.000

34

Feature highlights in the current
WorkShop/dbx release

Coverage tool usage (cvcov)
cvcov lsfun test0000

Functions Files Counts

is_ival isIval.c 0

is_rval isRval.c 0

make_hashtable serv.c 1

free_hashtable serv.c 1

insert_in_hash serv.c 7

find_in_hash serv.c 7

for_all_in_hash serv.c 1

hashUC serv.c 14

35

Feature highlights in the current
WorkShop/dbx release

Coverage tool usage (cvcov)
 cvcov lssource for_all_in_hash test0000

Counts Source

--

 void for_all_in_hash(Hash* ht, void (*func)(const char *, void
*))

1 {

 int ja;

 Link* link;

257 for (ja = 0; ja < ht->num_buckets; ja++)

257 for (link = ht->buckets[ja].link; link; link=link->next)

5 (*func)(link->key, link->adt);

1 }

36

Feature highlights in the
current WorkShop/dbx

release

• Visualizing arrays of pointers/derived types
– Bring up Array Visualizer and enter array name.

– Double click on the entry you are interested in.

– Structure or derived type is displayed in the
structure browser.

– Example on next slide.

37

Feature highlights in the new
release

• Visualizing arrays of pointers/derived
types

• Example page.

38

Features planned for the next
WS/dbx release.

Data navigation across cvd views
– One mouse action access to data

– Right mouse button down give default action

– Left or Right mouse button hold gives dynamic
menu

– Data display window for lightweight data
display (reusable or throw away)

– Reusable can access previous data panels
– Example on next slide

39

Features scheduled in the next
cvd/dbx release

• Data navigation across cvd views

40

Features scheduled in the next
cvd/dbx release

• Display here

41

Features planned for the next
WS/dbx release.

Reengineered Multiprocess Explorer
– Show MPI rank in Multiprocess Explorer (was

MPView)

– More readable Multiprocess Explorer

Reengineered Data Explorer View
– Name and minimal type information list for

selection

– Data navigation capabilities

– Hoping to add multiprocess/thread data navigation
– Example on next slide

42

Features planned for the next
cvd/dbx release.

• Reengineered Data Explorer View
– Show Data Explorer example here.

43

SGI Developer Tools
Update

SpeedShop

Appendix Information

44

What Is SpeedShop?

• A collection of tools to determine:
– Where is your application’s time spent?

– How is your application’s time spent?

– What are your application’s bottlenecks?

Your app

CPU usage

Your app

45

Why Use SpeedShop?

• It will help you:
– Minimize application development time

– Eliminate bottlenecks and bugs

– Maximize your application’s overall
performance

• How invoke SpeedShop:
– ssrun -<expr-type> <executable>

46

What SpeedShop will tell
you?

• SpeedShop reports statistical data
–Function name, source file name, line number,

and a statistical data that depends on the
experiment you’re running

– It includes system functions

• Cvperf will let you browse, via a GUI, into
your code

• Prof will gives a text based quick report

47

SpeedShop 1.4.3

SpeedShop 1.4.3 introduces two new
performance experiments:
– MPI Experiment (“ssrun –mpi”)

– NUMA Experiment (“ssrun –numa”)

Includes numerous bug fixes

48

New MPI experiment

MPI experiment answers four basic questions:
– Which MPI function was called?

– Who made the call?

– Where was the call made? (to the source line)

– How long did the call take?

49

MPI Experiment Example

How do I use it?
– NAS CG Parallel Benchmark (MPI)

– Origin 2000 with 16 300Mhz R12000

– mpirun -np 4 ssrun -mpi cg.A.4

% mpirun -np 4 ssrun -mpi cg.A.4
...
% prof cg.A.4.mpi.f1384250

SpeedShop profile listing generated Wed Jan 23 13:33:52 2002
...

Summary of MPI tracing data (mpi)--
 5044: Total Traced MPI calls

Callee list, in descending order by time taken in MPI call

 Seconds Calls MPI Function

 4.602 1680 MPI_Wait
 1.046 1 MPI_Finalize
 0.374 1680 MPI_Send
 0.204 1680 MPI_Irecv
 0.061 1 MPI_Init
 0.000 1 MPI_Reduce
 0.000 1 MPI_Barrier

50

MPI Example (Continued)

Call site list, in descending order by time taken in MPI call

 Seconds Calls MPI Function Function (dso: file, line)

 2.933 400 MPI_Wait conj_grad (cg.A.4: cg.f, 1177)
 1.409 400 MPI_Wait conj_grad (cg.A.4: cg.f, 1150)
 1.046 1 MPI_Finalize cg (cg.A.4: cg.f, 571)
 0.180 400 MPI_Send conj_grad (cg.A.4: cg.f, 1170)
 0.169 400 MPI_Send conj_grad (cg.A.4: cg.f, 1147)
 0.133 400 MPI_Irecv conj_grad (cg.A.4: cg.f, 1161)
 0.099 16 MPI_Wait conj_grad (cg.A.4: cg.f, 1059)
 0.069 16 MPI_Wait conj_grad (cg.A.4: cg.f, 1361)
 0.061 1 MPI_Init initialize_mpi (cg.A.4: cg.f, 594)
 0.048 400 MPI_Irecv conj_grad (cg.A.4: cg.f, 1139)
 0.041 16 MPI_Wait conj_grad (cg.A.4: cg.f, 1333)
 0.037 400 MPI_Wait conj_grad (cg.A.4: cg.f, 1275)
 0.016 400 MPI_Wait conj_grad (cg.A.4: cg.f, 1221)
 0.013 400 MPI_Irecv conj_grad (cg.A.4: cg.f, 1209)
 0.008 16 MPI_Send conj_grad (cg.A.4: cg.f, 1354)
 0.006 16 MPI_Send conj_grad (cg.A.4: cg.f, 1330)
 0.006 400 MPI_Irecv conj_grad (cg.A.4: cg.f, 1264)
 0.005 400 MPI_Send conj_grad (cg.A.4: cg.f, 1217)
 0.005 400 MPI_Send conj_grad (cg.A.4: cg.f, 1272)
 0.002 16 MPI_Irecv conj_grad (cg.A.4: cg.f, 1345)
 0.001 16 MPI_Irecv conj_grad (cg.A.4: cg.f, 1322)
 0.000 16 MPI_Irecv conj_grad (cg.A.4: cg.f, 1386)
 0.000 1 MPI_Reduce cg (cg.A.4: cg.f, 509)
 0.000 16 MPI_Irecv conj_grad (cg.A.4: cg.f, 1048)
 0.000 15 MPI_Wait cg (cg.A.4: cg.f, 474)
 0.000 16 MPI_Send conj_grad (cg.A.4: cg.f, 1056)
 0.000 16 MPI_Send conj_grad (cg.A.4: cg.f, 1394)
 0.000 15 MPI_Irecv cg (cg.A.4: cg.f, 463)
 0.000 15 MPI_Send cg (cg.A.4: cg.f, 471)
 0.000 1 MPI_Barrier cg (cg.A.4: cg.f, 411)
 0.000 16 MPI_Wait conj_grad (cg.A.4: cg.f, 1397)
 0.000 1 MPI_Wait cg (cg.A.4: cg.f, 376)
 0.000 1 MPI_Irecv cg (cg.A.4: cg.f, 365)
 0.000 1 MPI_Send cg (cg.A.4: cg.f, 373)

51

New NUMA experiment

NUMA experiment answers these questions:
– How often do I access memory on my own

NUMA node?

– Where am I accessing memory from a remote
NUMA node?

– Are my placement directives working?

52

NUMA experiment:
How does it work?

NUMA experiment does these items:

• Statistically samples memory accesses

• Looks for a “computable” memory access

• Stores “numa info” for each sample
– see SpeedShop portion of Appendix for additional

information

53

NUMA Example

• How do I use it?
– NAS CG Parallel Benchmark (OpenMP)

– Origin 2000 with 16 300Mhz R12000

% setenv OMP_NUM_THREADS 4
% ssrun -numa cg.A
...
% prof -source cg.A.numa.p1350994

SpeedShop profile listing generated Wed Jan 23 13:18:40 2002
...

Summary of NUMA memory profiling data (numa)--
 Secondary cache D misses (26): Counter Name (Number)
 100: Counter Average Overflow
 101066: Sampled Memory Accesses
 76615: Remote Memory Accesses
 75.807: Percent Remote Memory Accesses
 1.436: Average ccNUMA Routing Distance

Function list, in descending order by percent remote memory accesses

 Sampled Remote Pct Rmt Avg Dist Function (dso: file, line)

...
 100739 76465 75.904 1.437 conj_grad (cg.A: cg.c, 374)
...

54

NUMA Example

Disassembly listing, annotated with NUMA memory profiling data

...
conj_grad (cg.A: cg.c, 374):
...
429: /* rolled version */
430: #pragma omp for private(sum,k)
431: for (j = 1; j <= lastrow-firstrow+1; j++) {
432: sum = 0.0;
433: for (k = rowstr[j]; k < rowstr[j+1]; k++) {
434: sum = sum + a[k]*p[colidx[k]];
435: }
436: w[j] = sum;
437: }
438:
...
[434] 0x100057fc 0x8c440000 lw a0,0(v0)
 ^------ 220 Sampled, 75.909% Remote, Avg Dist = 1.459 ------^
[434] 0x10005800 0x000420c0 sll a0,a0,3
[434] 0x10005804 0xd42d0000 ldc1 $f13,0(at)
 ^------ 85 Sampled, 68.235% Remote, Avg Dist = 1.306 ------^
[434] 0x10005808 0x02042021 addu a0,s0,a0
[434] 0x1000580c 0xd48e0000 ldc1 $f14,0(a0)
 ^------ 106 Sampled, 83.019% Remote, Avg Dist = 1.500 ------^
[434] 0x10005810 0x24210008 addiu at,at,8
[434] 0x10005814 0x24420004 addiu v0,v0,4
[434] 0x10005818 0x4cee69e1 madd.d $f7,$f7,$f13,$f14
[434] 0x1000581c 0x12600046 beq s3,zero,0x10005938
[434] 0x10005820 0000000000 nop
[434] 0x10005824 0x16800698 bne s4,zero,0x10007288
[434] 0x10005828 0000000000 nop
[434] 0x1000582c 0x8c440000 lw a0,0(v0)
 ^------ 351 Sampled, 74.074% Remote, Avg Dist = 1.416 ------^
[434] 0x10005830 0xd4220008 ldc1 $f2,8(at)
 ^------ 582 Sampled, 77.491% Remote, Avg Dist = 1.474 ------^
[434] 0x10005834 0xd4230000 ldc1 $f3,0(at)
[434] 0x10005838 0x000420c0 sll a0,a0,3
[434] 0x1000583c 0x8c430004 lw v1,4(v0)
 ^------ 57 Sampled, 56.140% Remote, Avg Dist = 1.105 ------^
...

55

NUMA Experiment Notes &
Caveats

– Only supported on Origin 2000/3000

– No GUI available (CVPERF not supported),
only prof

– Storage requirements can be excessive
(32 bytes per sample)

– Do other optimizations first!
• First Order: algorithm selection

• Second Order: algorithm implementation
details

• Third Order: NUMA placement

