
Optimising Genomics Codes on the Cray MTA-2

Jon Gibson, CSAR, University of Manchester

ABSTRACT: This paper explains the issues in optimising the genomics codes, Phrap and
Cross-Match, for performance on the Cray MTA-2. Phrap assembles shotgun DNA sequence
data and Cross-Match compares any two sets of DNA sequences. The performance of Cross-
Match is assessed and compared to that of an SGI Origin 2000.

1. Introduction

The Cray MTA-2

The Cray MTA-2 (Multi-Threaded Architecture) uses

multiple lightweight threads on each processor as a novel
way to bypass the increasing problem of memory latency on
high performance architectures. It can have up to 128 of
these threads on each of 16 to 256 processors (noting that
the largest machine currently in existence is the 40
processor one at NRL). By switching between the active
threads at each clock cycle, the processor is kept busy and
the time taken to access memory is not wasted. This avoids
the need for caches and the multi-level memory hierarchy
normally associated with high performance architectures. In
fact, the machine provides a scalable uniform access to a
global shared memory, at a bandwidth of 2.4GB/s and with
an impressive 4GB of memory per processor. Another
desirable feature of the machine is that it is “easy to
program”. The parallelism is mainly loop-based and is
programmed using directives (in a similar way to OpenMP)
or, where possible, implemented automatically by the
compiler. Additionally, the MTA's uniform memory access
simplifies the task of the programmer, since issues such as
data locality and optimal cache usage are not relevant.

The Codes

Phrap, whose name is derived from the initial letters of
phragment assembly program, assembles shotgun DNA
sequence data, typically from a single input file containing
the reads. The process of hierarchical shotgun sequencing is
shown in Fig. 1. A library is constructed by fragmenting the
target genome and cloning it into a large-fragment cloning
vector; here, BAC vectors are shown. The genomic DNA
fragments represented in the library are then organized into
a physical map and individual BAC clones are selected and
sequenced by the random shotgun strategy. Finally, the
clone sequences are assembled to reconstruct the sequence
of the genome. Note that DNA sequences are made up of
four different nucleotides, represented by the letters A, C, G

and T.

 Figure 1. Hierarchical shotgun sequencing (© Nature)

Cross-Match, which is really just a subset of the Phrap
code, compares any two sets of (long or short) DNA
sequences, looking for possible matches. Typically, it inputs
two files: the query sequences and the subject sequences.
However, it can also compare the different sequences
against one another in a single input file.

Both of these programs use a banded version of SWAT,

an efficient implementation of the Smith-Waterman
algorithm. The Smith-Waterman algorithm finds the optimal
local alignment of any two sequences. It is an iterative,
matrix-based calculation, where all possible pairs of

 1

residues, one from each sequence, are represented in a 2D
array of cells and all possible alignments by pathways
through this array. The highest score is assigned to each cell
out of those for all the possible paths/alignments leading to
it. These scores are based on the previous score for the
alignment in question, the similarity score for the pair of
residues and any gap penalties, for gaps introduced into the
sequence. The optimal local alignment is then determined
by tracing the pathway back from the highest scoring cell.

2. Parallelisation of Cross-Match
Cross-Match first of all reads in the sequence and, if

present, quality data from input file. It then finds pairs of
reads having matching words of a given minimum length.
Each such word is used to define a band in the Smith-
Waterman matrix, centred on this match. The program
eliminates any exact duplicate reads and then does swat
comparisons of pairs of reads which have matching words,
computing the (complexity-adjusted) swat score. It prints
out the matches at the end.

Before we started this work, modifications had already

been made to the code so that it would run in parallel on a
number of different architectures (specifically: Compaq
Alphas, Hewlett Packards, Pentium III PC’s, SGI’s and
Suns). The code applicable to each given architecture was
picked out using #ifdef statements. The following shows a
code sample for running on an SGI machine. The #pragma

lin
co
m
as

The approach to parallelisation is different on the
MTA, since all tasks are dynamically scheduled and thread
numbers are something that the programmer should not
have to consider. However, the existing code allocates
memory separately for each thread, which means that only
one piece of work with a given “thread number” should be
allowed to execute the loop at any one time. There is also
the question of how to generate the thread numbers, since
the MTA system does not provide anything of easy practical
use. The ported code is shown below.

The equivalent of the thread number in this code is
given by entry1%nprocs, the value of the loop counter
(each one representing a block of work to be allocated to a
thread) modulo the number of threads which can be
executed simultaneously (i.e. for which memory has been
allocated). Only one of these thread numbers can be
executed at any one time because of the lock, which is
implemented using an array of sync variables, large enough
to hold all the thread numbers. When a thread executes the
lock$[i] = 1; line, it can be thought of as acquiring the lock,
so that no other thread with the same i value can execute the
loop until the lock is released, via the temp = lock$[i];
statement.

An alternative approach that was looked at here was to
replace the loop by a pair of nested loops, with the inner
loop being run over MTA_NUM_THREADS, the number of
available threads. However, this was found to be the inferior
alternative since there was a run-down in the thread usage
#ifdef SGI
#define thread_num() mp_my_threadnum()
#endif
……………
find_all_scores (db, nprocs)
 Database *db; int nprocs;
{
……………
#ifdef SGI
#pragma parallel
#pragma local (entry1,tempseq,i)
 {
#pragma pfor iterate (entry1=ies; ief-ies+1; 1)
#pragma schedtype (dynamic)
#endif
 for (entry1 = ies; entry1 <= ief; entry1++) {
#ifdef SGI
 i = thread_num();
#endif
……………{body of loop}……………
es are SGI directives for parallelising sections of the
de, in this case the for-loop over index entry1. The
p_my_threadnum() function gives the unique number
signed to the thread in question.

as

co
ca
pr

 2
#ifdef MTA
 __sync int lock$[MAX_PROCS]; int temp;
#endif
……………
find_all_scores (db, nprocs)
 Database *db; int nprocs;
{
……………
#ifdef MTA
#pragma mta assert parallel
#endif
 for (entry1 = ies; entry1 <= ief; entry1++) {
#ifdef MTA
#pragma mta assert local tempseq, i, temp
 i = entry1%nprocs;
 lock$[i] = 1;
#endif
……………{body of loop}……………
#ifdef MTA
 temp = lock$[i];
#endif
 each set of inner loops was completed.
In order to check what the compiler has done with the

de, the programmer can use the compiler analysis tool,
nal. For the section of code under consideration, it
oduces the following output.

 | |#ifdef MTA
 | |#pragma mta assert parallel
 | |#endif
 | |for (entry1 = ies; entry1 <= ief; entry1++) {
 | |#ifdef MTA
 | |#pragma mta assert local tempseq, i, temp
 | 12 p | i = entry1%nprocs;
 | 12 D | lock$[i] = 1;
 | |#endif
 | 12 p | tempseq = get_seq(entry1);
 | 12 D | find_scores (entry1, tempseq, i);

 |Loop 12 in find_all_scores at line 569 in region 9
 | in parallel phase 2
 | interleave scheduled
 | dependences carried by: dot_time
 | dependences carried by: rep_time
 |
 |Parallel Region 9 in find_all_scores
 | multiple processor implementation
 | requesting at least 115 streams

The top half of this output shows the code, with 12
being the loop number. The letters p and D both indicate
that the loop will be executed concurrently due to the assert
parallel directive, with the D’s being statements that would
otherwise have prevented parallelisation due to possible
dependencies. More information is provided in the lower
half, including the type of scheduling and the number of
streams being requested.

3. Performance of Cross-Match

Upon running the Cross-Match code, of which the

find_all_scores function in our example forms the major
part, we found that parallelism is only limited by the
number of reads in the input file and the number of
available threads on the machine. We clearly need a large
data set to fully exploit the machine and we found the ideal
candidate in the form of the Fugu fish, shown in Fig. 2.

 Figure 2. The Fugu Fish

Its DNA has recently been sequenced and the data is

freely available. Suprisingly perhaps, it seems that the Fugu
fish is genetically remarkably similar to humans, hence it
has generated a lot of interest.

Running with a 10MB, 10,000 entry input file on one
processor, the diagnostic tool traceview shows the
following performance for the find_all_scores loop.

 Figure 3. Traceview output.

The dark red line on the graph shows the number of
available threads and the yellow line shows the number of
threads which are running. The vertical scale is a little
unclear but the last point on the scale is at 0.9: 90% CPU
usage. The graph shows that the processor was being
saturated at first but that there is also a significant run-down
time as the available data gets used up and the number of
threads actually running decreases. The possibilities for
improving the load-balancing here are to be investigated but
it becomes less of a problem as the size of the input file
increases – 10MB is still relatively small.

Figure 4 shows how the number of threads scales with
the number of processors the job is run on. Since all our

Scaling

0

500

1000

1 2 3 4 5 6

No. of Procs

N
o.

 o
f t

hr
ea

ds

 Figure 4. Linear Scaling of Threads

results were from an eight processor machine, we can only
show scaling up to six processors, but as long as sufficient
data is available, scaling should continue to be linear.

We compared the time that the code took to do 50% of
the swatting (i.e. of the swat comparisons) on the MTA with
the time taken on an SGI Origin 2000, for runs on one
processor. We are comparing the first 50% so that we are
only looking at the part of the calculation where the MTA is
saturated, i.e. we are striving to compare performance with
the effects of problem-size on the MTA being ignored. We

 3

found that the MTA did 50% of its swatting in 651 seconds,
compared to 360 seconds on the Origin. The code does run
well on the Origin and when you consider that it has twice
the clock speed, 400MHz as opposed to the MTA’s
200MHz, their relative performance seems unsurprising.
Clearly, the MTA cannot compete with problems of this
size. It is only going to do so if and when the problem size
is such that efficient cache use on the Origin is no longer
possible. Further investigation is currently being
undertaken.

The enormous data sets associated with genomics and
the inherently parallel nature of the processing could
provide an excellent opportunity for the MTA to show off
its potential. However, although it is starting to provide
some promising results, the real test will be the comparison
of its performance when those really big data sets are run.

Acknowledgements

The author would like to thank Jim Maltby of Cray Inc,

Seattle for all his help on the project, as well as everyone
else who has been involved, including Steve Jordan and
Gail Alverson of Cray, and Stephen Pickles, Mike Pettipher
and Keith Taylor of CSAR, University of Manchester.

About the Author

Jon Gibson is a high performance computing consultant
at CSAR, Manchester Computing, University of
Manchester, U.K. E-mail: jon.gibson@man.ac.uk

 4

	1. Introduction
	The Cray MTA-2
	The Codes

	2. Parallelisation of Cross-Match
	
	
	Acknowledgements

