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ABSTRACT: This paper explains the issues in optimising the genomics codes, Phrap and 
Cross-Match, for performance on the Cray MTA-2. Phrap assembles shotgun DNA sequence 
data and Cross-Match compares any two sets of DNA sequences. The performance of Cross-
Match is assessed and compared to that of an SGI Origin 2000.

1. Introduction 

The Cray MTA-2 
 
The Cray MTA-2 (Multi-Threaded Architecture) uses 

multiple lightweight threads on each processor as a novel 
way to bypass the increasing problem of memory latency on 
high performance architectures. It can have up to 128 of 
these threads on each of 16 to 256 processors (noting that 
the largest machine currently in existence is the 40 
processor one at NRL). By switching between the active 
threads at each clock cycle, the processor is kept busy and 
the time taken to access memory is not wasted. This avoids 
the need for caches and the multi-level memory hierarchy 
normally associated with high performance architectures. In 
fact, the machine provides a scalable uniform access to a 
global shared memory, at a bandwidth of 2.4GB/s and with 
an impressive 4GB of memory per processor. Another 
desirable feature of the machine is that it is “easy to 
program”. The parallelism is mainly loop-based and is 
programmed using directives (in a similar way to OpenMP) 
or, where possible, implemented automatically by the 
compiler. Additionally, the MTA's uniform memory access 
simplifies the task of the programmer, since issues such as 
data locality and optimal cache usage are not relevant.  

The Codes 
 

Phrap, whose name is derived from the initial letters of 
phragment assembly program, assembles shotgun DNA 
sequence data, typically from a single input file containing 
the reads. The process of hierarchical shotgun sequencing is 
shown in Fig. 1. A library is constructed by fragmenting the 
target genome and cloning it into a large-fragment cloning 
vector; here, BAC vectors are shown. The genomic DNA 
fragments represented in the library are then organized into 
a physical map and individual BAC clones are selected and 
sequenced by the random shotgun strategy. Finally, the 
clone sequences are assembled to reconstruct the sequence 
of the genome. Note that DNA sequences are made up of 
four different nucleotides, represented by the letters A, C, G  

and T. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 1. Hierarchical shotgun sequencing (© Nature) 
 

Cross-Match, which is really just a subset of the Phrap 
code, compares any two sets of (long or short) DNA 
sequences, looking for possible matches. Typically, it inputs 
two files: the query sequences and the subject sequences. 
However, it can also compare the different sequences 
against one another in a single input file. 

 
Both of these programs use a banded version of SWAT, 

an efficient implementation of the Smith-Waterman 
algorithm. The Smith-Waterman algorithm finds the optimal 
local alignment of any two sequences. It is an iterative, 
matrix-based calculation, where all possible pairs of 
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residues, one from each sequence, are represented in a 2D 
array of cells and all possible alignments by pathways 
through this array. The highest score is assigned to each cell 
out of those for all the possible paths/alignments leading to 
it. These scores are based on the previous score for the 
alignment in question, the similarity score for the pair of 
residues and any gap penalties, for gaps introduced into the 
sequence. The optimal local alignment is then determined 
by tracing the pathway back from the highest scoring cell. 
 

 

 

2.  Parallelisation of Cross-Match 
Cross-Match first of all reads in the sequence and, if 

present, quality data from input file. It then finds pairs of 
reads having matching words of a given minimum length. 
Each such word is used to define a band in the Smith-
Waterman matrix, centred on this match. The program 
eliminates any exact duplicate reads and then does swat 
comparisons of pairs of reads which have matching words, 
computing the (complexity-adjusted) swat score. It prints 
out the matches at the end.  

 
Before we started this work, modifications had already 

been made to the code so that it would run in parallel on a 
number of different architectures (specifically: Compaq 
Alphas, Hewlett Packards, Pentium III PC’s, SGI’s and 
Suns). The code applicable to each given architecture was 
picked out using #ifdef statements. The following shows a 
code sample for running on an SGI machine. The #pragma 
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The approach to parallelisation is different on the 
MTA, since all tasks are dynamically scheduled and thread 
numbers are something that the programmer should not 
have to consider. However, the existing code allocates 
memory separately for each thread, which means that only 
one piece of work with a given “thread number” should be 
allowed to execute the loop at any one time. There is also 
the question of how to generate the thread numbers, since 
the MTA system does not provide anything of easy practical 
use. The ported code is shown below. 

The equivalent of the thread number in this code is 
given by entry1%nprocs, the value of the loop counter 
(each one representing a block of work to be allocated to a 
thread) modulo the number of threads which can be 
executed simultaneously (i.e. for which memory has been 
allocated). Only one of these thread numbers can be 
executed at any one time because of the lock, which is 
implemented using an array of sync variables, large enough 
to hold all the thread numbers. When a thread executes the 
lock$[i] = 1; line, it can be thought of as acquiring the lock, 
so that no other thread with the same i value can execute the 
loop until the lock is released, via the temp = lock$[i]; 
statement.  

An alternative approach that was looked at here was to 
replace the loop by a pair of nested loops, with the inner 
loop being run over MTA_NUM_THREADS, the number of 
available threads. However, this was found to be the inferior 
alternative since there was a run-down in the thread usage 
#ifdef SGI 
#define     thread_num()  mp_my_threadnum()
#endif 
…………… 
find_all_scores (db, nprocs) 
  Database *db; int nprocs; 
{ 
…………… 
#ifdef SGI 
#pragma parallel 
#pragma local (entry1,tempseq,i) 
 { 
#pragma pfor iterate (entry1=ies; ief-ies+1; 1) 
#pragma schedtype (dynamic) 
#endif 
 for (entry1 = ies; entry1 <= ief; entry1++) { 
#ifdef SGI 
      i = thread_num(); 
#endif 
……………{body of loop}…………… 
es are SGI directives for parallelising sections of the 
de, in this case the for-loop over index entry1. The 
p_my_threadnum() function gives the unique number 
signed to the thread in question.  
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#ifdef MTA 
  __sync int lock$[MAX_PROCS];  int temp; 
#endif 
…………… 
find_all_scores (db, nprocs) 
  Database *db; int nprocs; 
{ 
…………… 
#ifdef MTA 
#pragma mta assert parallel 
#endif 
    for (entry1 = ies; entry1 <= ief; entry1++) {
#ifdef MTA 
#pragma mta assert local tempseq, i, temp 
      i = entry1%nprocs; 
      lock$[i] = 1;  
#endif 
……………{body of loop}…………… 
#ifdef MTA 
      temp = lock$[i]; 
#endif
 each set of inner loops was completed. 
In order to check what the compiler has done with the 

de, the programmer can use the compiler analysis tool, 
nal. For the section of code under consideration, it 
oduces the following output.  

 



  |          |#ifdef MTA 
  |          |#pragma mta assert parallel 
  |          |#endif 
  |          |for (entry1 = ies; entry1 <= ief; entry1++) {
  |          |#ifdef MTA 
  |          |#pragma mta assert local tempseq, i, temp 
  | 12 p  |      i = entry1%nprocs; 
  | 12 D |      lock$[i] = 1;  
  |          |#endif 
  | 12 p  |      tempseq = get_seq(entry1); 
  | 12 D |      find_scores (entry1, tempseq, i); 
 
  |Loop 12 in find_all_scores at line 569 in region 9  
  |   in parallel phase 2                               
  |   interleave scheduled                              
  |   dependences carried by: dot_time                  
  |   dependences carried by: rep_time                  
  |                                                     
  |Parallel Region 9 in find_all_scores                 
  |   multiple processor implementation                 
  |   requesting at least 115 streams

 

The top half of this output shows the code, with 12 
being the loop number. The letters p and D both indicate 
that the loop will be executed concurrently due to the assert 
parallel directive, with the D’s being statements that would 
otherwise have prevented parallelisation due to possible 
dependencies. More information is provided in the lower 
half, including the type of scheduling and the number of 
streams being requested.  

 
 

3. Performance of Cross-Match 
 
Upon running the Cross-Match code, of which the 

find_all_scores function in our example forms the major 
part, we found that parallelism is only limited by the 
number of reads in the input file and the number of 
available threads on the machine. We clearly need a large 
data set to fully exploit the machine and we found the ideal 
candidate in the form of the Fugu fish, shown in Fig. 2.  

   Figure 2. The Fugu Fish 
 
Its DNA has recently been sequenced and the data is 

freely available. Suprisingly perhaps, it seems that the Fugu 
fish is genetically remarkably similar to humans, hence it 
has generated a lot of interest.  

Running with a 10MB, 10,000 entry input file on one 
processor, the diagnostic tool traceview shows the 
following performance for the find_all_scores loop.  

     Figure 3. Traceview output. 
 

The dark red line on the graph shows the number of 
available threads and the yellow line shows the number of 
threads which are running. The vertical scale is a little 
unclear but the last point on the scale is at 0.9: 90% CPU 
usage. The graph shows that the processor was being 
saturated at first but that there is also a significant run-down 
time as the available data gets used up and the number of 
threads actually running decreases. The possibilities for 
improving the load-balancing here are to be investigated but 
it becomes less of a problem as the size of the input file 
increases – 10MB is still relatively small. 

Figure 4 shows how the number of threads scales with 
the number of processors the job is run on. Since all our  
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   Figure 4. Linear Scaling of Threads 
 

results were from an eight processor machine, we can only 
show scaling up to six processors, but as long as sufficient 
data is available, scaling should continue to be linear.  

We compared the time that the code took to do 50% of 
the swatting (i.e. of the swat comparisons) on the MTA with 
the time taken on an SGI Origin 2000, for runs on one 
processor. We are comparing the first 50% so that we are 
only looking at the part of the calculation where the MTA is 
saturated, i.e. we are striving to compare performance with 
the effects of problem-size on the MTA being ignored. We 
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found that the MTA did 50% of its swatting in 651 seconds, 
compared to 360 seconds on the Origin. The code does run 
well on the Origin and when you consider that it has twice 
the clock speed, 400MHz as opposed to the MTA’s 
200MHz, their relative performance seems unsurprising. 
Clearly, the MTA cannot compete with problems of this 
size. It is only going to do so if and when the problem size 
is such that efficient cache use on the Origin is no longer 
possible. Further investigation is currently being 
undertaken.  

The enormous data sets associated with genomics and 
the inherently parallel nature of the processing could 
provide an excellent opportunity for the MTA to show off 
its potential. However, although it is starting to provide 
some promising results, the real test will be the comparison 
of its performance when those really big data sets are run. 
 
 
Acknowledgements 

 
The author would like to thank Jim Maltby of Cray Inc, 

Seattle for all his help on the project, as well as everyone 
else who has been involved, including Steve Jordan and 
Gail Alverson of Cray, and Stephen Pickles, Mike Pettipher 
and Keith Taylor of CSAR, University of Manchester.  

 
 

About the Author 
 

Jon Gibson is a high performance computing consultant 
at CSAR, Manchester Computing, University of 
Manchester, U.K. E-mail: jon.gibson@man.ac.uk 

 4  


	1. Introduction
	The Cray MTA-2
	The Codes

	2.  Parallelisation of Cross-Match
	
	
	Acknowledgements




