
Optimising Genomics
Codes on the
Cray MTA-2

Jon Gibson

Your corporate
logo here

jon.gibson@man.ac.uk

The Project

 The aim of the project is to optimise the
genomics codes Phrap and Cross-Match for
performance on the Cray MTA-2.

Currently involved with the project are:

• Jon Gibson @ CSAR,

• Keith Taylor @ CSAR and

• Jim Maltby @ CRAY.

The Cray MTA-2
• Multi-Threaded Multiple active threads (up to 128) on

each processor.
– Used to hide latency.

– 16 to 256 processors.

• Scalable uniform access to global shared memory.
– 2.4GB/s bandwidth.

– 4GB of memory per processor.

• Easy programming model.
– Mainly loop-based parallelism.

– Uniform access to global memory.

– Dynamic scheduling of tasks.

Phrap and Cross-Match
• Phragment assembly program
• Assembles shotgun DNA sequence data.

– Typically, single input file containing the reads.

• Cross-Match
• Compares any two sets of (long or short) DNA

sequences.
– Typically, 2 input files: the query sequences and the subject

sequences.

• Both programs use a "banded" version of SWAT, an
efficient implementation of the Smith-Waterman
algorithm.

Smith-Waterman Algorithm

• Algorithm for finding the optimal LOCAL
alignment of any two sequences

• Iterative matrix-based calculation
– All possible pairs of residues, one from

each sequence, are represented in a 2D
array of cells.

– All possible alignments are represented by
pathways through this array.

Smith-Waterman Algorithm

• The highest score is assigned to each
cell out of those of all the possible
paths/alignments leading to it.
– Based on the previous score, the similarity

score of the pair of residues and gap
penalties.

• The alignment is determined by tracing
the pathway back from the highest
scoring cell.

Hierarchical Shotgun Sequencing

Cross-Match

• Read in sequence and quality data.
• Find pairs of reads having matching words of

a given minimum length. Each such word
defines a band in the Smith-Waterman matrix,
centred on the word match.

• Eliminate exact duplicate reads. Do swat
comparisons of pairs of reads which have
matching words and compute the
(complexity-adjusted) swat score.

• Print the matches.

Previous Work on the Code

• Modifications had already been made to
the code so that it would run in parallel
on a number of different architectures.
Code applicable to a given architecture
was picked out using #ifdef statements.
An example, for an SGI machine, is
considered on the next slide. The slide
after this shows how this would be
coded on the MTA.

Sample Code on the SGI

#ifdef SGI
#define thread_num() mp_my_threadnum()
#endif
…………
#ifdef SGI
#pragma parallel
#pragma local (entry1,tempseq,i)
 {
#pragma pfor iterate (entry1=ies; ief-ies+1; 1)
#pragma schedtype (dynamic)
#endif
 for (entry1 = ies; entry1 <= ief; entry1++) {
#ifdef SGI
 i = thread_num();
#endif
…………{body of loop}………………

Code Ported to the MTA
#ifdef MTA
 __sync int lock$[MAX_PROCS]; int temp;
#endif
…………….
#ifdef MTA
#pragma mta assert parallel
#endif
 for (entry1 = ies; entry1 <= ief; entry1++) {
#ifdef MTA
#pragma mta assert local tempseq, i, temp
 i = entry1%nprocs;
 lock$[i] = 1;
……………{body of loop}……………….
#ifdef MTA
 temp = lock$[i];
#endif

Canal Compiler Analysis of
this MTA Code

 | |#ifdef MTA
 | |#pragma mta assert parallel

 | |#endif

 | | for (entry1 = ies; entry1 <= ief; entry1++) {

 | |#ifdef MTA

 | |#pragma mta assert local tempseq, i, temp

 | 12 p | i = entry1%nprocs;

 | 12 D | lock$[i] = 1;

 | |#endif

 | 12 p | tempseq = get_seq(entry1);

 | 12 D | find_scores (entry1, tempseq, i);

Canal Compiler Analysis of
this MTA Code

 |Loop 12 in find_all_scores at line 569 in region 9
 | in parallel phase 2

 | interleave scheduled

 | dependences carried by: dot_time

 | dependences carried by: rep_time

 |

 |Parallel Region 9 in find_all_scores

 | multiple processor implementation

 | requesting at least 115 streams

 |

Performance of Cross-Match

• Parallelism is only limited by the number
of reads in the input file and the number
of available threads on the machine.

• We need a large data set to fully exploit
the machine so…..

Name That Fish!

Traceview Output

Linear Scaling
Scaling

0

200

400

600

800

1 4 6

No. of Procs

N
o

.
o

f
th

re
a
d

s

Yeah, but how fast is it?

• With a 10MB (10,000 entries) input deck,
the MTA (200MHz) does 50% of its
swatting in 651 secs.

• An Origin 2000 (400MHz) does the
same in 360 secs.

• However, this is still a fairly small input.

Conclusion

 The enormous data sets associated
with genomics and the inherently
parallel nature of the processing provide
an excellent opportunity for the MTA to
show off its potential; it is starting to
provide some promising results.

