
CUG SUMMIT 2002 Proceedings 1

0u
x

B

x

BB

x
p1

x

u
u i

2

i

j

j

ij

jj

i
j =∇

ρ
ν−










∂
∂

−
∂
∂

µ σ
−

∂
∂

ρ
+

∂
∂

⋅

u
B
x

B
u
x

B
xj

i

j

j
i

j

i⋅ − ⋅ − =∂
∂

∂
∂ µ σ

∂
∂

1
02

∂
∂

u

x
i

j

= 0

∂
∂
B

x
i

j

= 0

The Parallel Performance of a Tightly Coupled
3D Magnetohydrodynamic Simulation

Lee Margetts and Mike Pettipher
CSAR, Manchester Computing

ABSTRACT: In magnetohydrodynamics, two distinct processes, magnetism
and fluid flow, are physically coupled. Traditional methods start by
decoupling these processes, solving the fluid and electromagnetic problems
separately. The physical coupling is achieved later using the results of the
fluid calculation in the electromagnetic problem and vice versa. We depart
from this approach, solving the full system of equations using a tightly
coupled parallel program. The parallel performance is investigated using a
512 processor Origin3800.

Introduction

In real engineering problems, two or more physical
processes are often coupled. A typical example is fluid
flow, where the pressure and velocity fields are coupled by
the Navier Stokes equations. In magnetohydrodynamics, a
further physical process is involved as the fluid is
electrically conducting and its behaviour can be modified by
an externally applied magnetic field.

A common solution approach is to decouple the
physical processes and use separate software packages to
solve each physical problem. Although the problem is more
manageable, the overall computational effort increases as
information is transferred between packages. Often these
packages use different computational methods with
additional work being carried out interpolating the values of
the variables between different computational domains. An
example is described by Morandini et al. [1994].

As in the field of computational fluid dynamics,
magnetohydrodynamic problems can be solved by a variety
of numerical techniques such as finite differences or finite
elements. Various formulations are in use that simplify the
equations by taking mathematical short cuts. For simple test
problems, these methods produce similar answers within
reasonable computation times. However, for complicated
geometries, these simplified methods may not give the
correct answer or give any answer at all.

The closest we can get to the correct solution is to solve
the full system of simultaneous equations with no
simplifications. This is often referred to as direct numerical
simulation or DNS. Being computationally very expensive,
DNS is not practical for everyday problems. However,
solving large complicated problems using DNS on

supercomputers benefits the developers of simplified
industrial algorithms by providing accurate solutions for
validation work.

In this paper, the physical processes remain fully
coupled in terms of the equations, which are solved, in a
tightly coupled parallel program using DNS.

Numerical Method

The steady state magnetohydrodynamic (MHD) equations
for an electrically conducting viscous incompressible fluid
are as follows:

(1)

(2)

(3)

(4)

The equation relating to the fluid flow (1) and the
equation relating to the magnetic field (2) both contain
terms in velocity ui and magnetic field Bi, i.e. they are
coupled. Equations (3) and (4) relate to the continuity
conditions for the ui and Bi respectively. The material

CUG SUMMIT 2002 Proceedings 2

properties are as follows ν (viscosity), ρ (density), µ
(permittivity) and σ (conductivity).

Approximation by the Galerkin process leads to the
equilibrium equation 5:

(5)

Using 20-node brick elements to solve for the velocity
and magnetic fields and 8-node bricks to solve for the
pressure leads to a 128 x 128 term element stiffness matrix.
The terms that represent each primitive variable (u, p, v, w,
etc.) are collected into the submatrices C11 etc. The stiffness
matrix can be divided into four segments as indicated by the
broken lines. In the top left hand corner, we simply have
the Navier Stokes terms developed by Taylor [1981]. In the
bottom right hand section, the terms describe the diffusion
of the magnetic field only. The remaining quadrants
describe the coupling between the two physical processes.

Solution by assembly methods requires the construction
of a sparse global stiffness matrix that is most simply solved
by gaussian elimination. The size of problem that can be
solved ‘in core’ by assembly methods is restricted by
memory. 3D problems quickly reach a size where special
procedures are required. These invariably rely on ‘out of
core’ storage strategies such as ‘paging’. Such input/output
strategies, whilst commonly used, should ideally be avoided
as they greatly degrade program performance.

In element by element methods, a global stiffness
matrix is never assembled and the solution is advanced
using an iterative algorithm. Such methods have been
shown to lend themselves well to parallelisation (Smith and
Pettipher, [1997] and Carey et al.,[1997]).

A serial finite element program was developed to solve
both the 3d Navier Stokes and magnetohydrodynamics
equations using the iterative solution algorithm
BiCGStab(l). This was parallelised using the method
outlined by Pettipher & Smith [1997].

The finite elements are divided equally between the
processors. Each processor calculates the element stiffness
matrix for each of its allocated elements. The solution
proceeds with each processor working independently
through its set of elements. In both serial and parallel
programs, the largest proportion of run time is spent in the
matrix-vector multiplication described. The principal
difference between the two is that the parallel code expends

additional effort in communication and setting up the
Message Passing Interface (MPI). Also some processing
and storage is duplicated across the processors. However,
the parallelisation strategy works well and greatly outweighs
these additional costs.

Program performance

Around 99% of the execution time is spent in the
iterative solver BiCGStab(l) and the complete solution of
the finite element analysis requires hundreds or thousands of
iterations, depending on the problem. As exactly the same
number of operations are performed in each iteration, the
performance of the program can be determined by
measuring the performance of one iteration. The
performance results presented here were taken over tens of
iterations to smooth out any variability which may arise due
to system loading.

Most of the computation is carried out in the following
‘do loop’:

gather(x)
do iel=1,nels-pp

u=matmul(ke,x)
end do

scatter(u)

The gather operation collects the values required to
complete the vector x from neighbouring processors. The
matrix vector multiplication proceeds as in the serial
program, with each processor working through its own set
of elements. The scatter operation ensures that
contributions to a shared nodal value (or freedom) are
communicated across processors. Later discussions
distinguish between the performance of the matrix-vector
computation only and the whole kernel, including the
gather/scatter communication overhead.

Initial studies, carried out for a Navier-Stokes (NS)
problem using a 195MHz Origin 2000, showed that the
utilization of the processor dropped from a high of around
20% of peak to 10% of peak when increasing the size of the
problem analysed.

The higher value was achieved for a very small
problem of around 200 finite elements in size. A simple
hand calculation showed that the vectors and stiffness
matrices required for the small problem could all fit into the
cache memory. A consequence of this is that the processor
does not need to retrieve data from main memory during the
computation and each time data is required it is available in
cache.

Various ways of optimizing the program to overcome
the performance drop were investigated. Various compiler
optimisations and mathematical libraries were used without
success. Matrix-vector computation does not provide
enough work to keep the processor busy whilst the memory
accesses are being carried out. It is inevitable that at some
point, the memory accesses hold up the processor.

Although 10% is quite acceptable, it was of particular
concern that in a parallel environment the speed of data

CouplingNavier -
Stokes

































=





























































0
0

0

0

0

0

0

B

B
B

w

v

p

u

C00C000

0C00C00
00C000C

CCCC0C0

CCC0CC0

000CC0C

CCC00CC

z

y

x

5551

5551

5551

4746451142

3736351132

242321

1716151211

Magnetic
DiffusionCoupling

CUG SUMMIT 2002 Proceedings 3

retrieval from main memory can be quite variable, being
delayed by other users. It was observed that 10% peak was
at the high end of a variable range that depended greatly on
the machine loading. As the parallel programs are
computationally tightly coupled, a delay to one processor
inevitably delays all the other processors in the analysis.

Other than keeping the number of elements within the
cache limit, there is not much that can be done to optimise
the performance of the program. With respect to the parallel
implementation, 210 elements per processor is theoretically
the optimum limit. This was not a positive observation
considering that one would like to perform analyses with
thousands, if not millions of elements. Furthermore, it
should be noted that out of the vendor’s range of possible
configurations, the cache on this machine was of a generous
size at 8Mb.

The incomplete parent stiffness matrix

Further thoughts on how to overcome this limit led to
the question – do we really need to store all of this
information?

The stiffness of a finite element depends on its shape
and material properties. For the Navier-Stokes problem, if
all the finite elements are of the same shape and have the
same material properties, the majority of the stiffness matrix
is common to all. Only the submatrix C11, is unique for
each finite element. The rest of the stiffness matrix can be
considered as being an incomplete parent for all elements
with the same geometry and physical properties. With only
8% of the storage originally required, this represents a
considerable improvement. The matrix vector
multiplication can then be carried out in a number of steps,
with the final answer vector being assembled at the end.

Figure 1 %Peak performance: 6,500,000 NS equations

Figure 2 Speed-up: 6,500,000 NS equations

The performance of the program was greatly improved
as shown in figure 1. For a problem with 6.5 million
equations, a sustained peak performance of around 20% was
obtained for up to 256 processors. The matrix-vector
computation, excluding the parallel overhead, sustained
40% of peak, representing the upper limit of the
performance that could be achieved should the
communication overhead be reduced.

The principal drawback of this strategy is that the
generality of the finite element approach has been lost - all
elements must have the same shape and material property.
One of the advantages of finite element analysis is that it
can be used to solve problems in arbitrarily shaped domains.
Also, techniques such as adaptive mesh refinement, which
increase element density in regions of high field gradient,
can no longer be applied, although one could have families
of finite elements with identical shapes and material
properties.

There is an obvious way around this limitation for
simple elements. If one was using two dimensional
equilateral triangle elements, there exists a parent stiffness
matrix that when multiplied by an appropriate scalar value
can represent any size equilateral triangle. Arbitrary bricks
are difficult to manipulate in this way because complicated
functions, taking into account rotation and translation,
would have to be applied to a parent brick stiffness matrix to
transform it into any arbitrary brick. This information
would both be difficult to compute and may result in a
similar storage requirement - a matrix for each finite
element!

0

100

200

300

400

0 100 200 300 400

Number of Processors

S
pe

ed
 u

p

Ideal speed
up

Super-linear
speed up

48 16 32 64 128 256

0

10

20

30

40

50

0 50 100 150 200 250 300

Number of Processors

%
 P

ea
k

P
er

fo
rm

an
ce

Matrix-vector only

Matrix-vector + gather
/scatter communication

CUG SUMMIT 2002 Proceedings 4

Optimising for cache use – MHD stiffness matrix

Accepting this limitation for the moment and returning to
the full MHD element stiffness matrix, it turns out that all of
the remaining eleven submatrices, Cij, are unique for each
finite element – whether or not they share the same shape
and material properties. Storage and therefore cache reuse
still remains a problem even if the incomplete parent
approach is used. An alternative way to improve cache
reuse is to store each submatrix in its own array, store-Cij,
and unroll the matrix-vector loop into several partial
computations as follows:

The original matrix-vector computation:

do iel=1,nels-pp
u=matmul(ke,x)

end do

is replaced by a series of do loops, one for each submatrix:

do iel=1,nels-pp
u’=matmul(C15,x’)

end do

do iel=1,nels-pp
u’=matmul(C55,x’)

end do etc.

where nels-pp are the number of finite elements per
processor, ke is the element stiffness matrix, u’ and x’ are
the appropriate parts of u and x and C15, etc are the
submatrices.

The performance figures obtained when solving a 4
million MHD problem using an SGI Origin 3800, are shown
in figures 3 and 4. In short, the optimisation strategy
outlined for the MHD stiffness matrix storage has proven
successful.

Figure 3 %Peak performance: 4,000,000 MHD equations

Figure 4 Speed up: 4,000,000 MHD equations

Comparing figures 1 and 3, the performance of the
MHD matrix vector computation is ~5-10% lower than that
observed for the Navier Stokes problem. In the Navier-
Stokes case, there is only one nels_pp loop and this is
executed using values stored in the C11 submatrix. As the
MHD problem requires 12 separate loops, one for each
submatrix, there is an inevitable delay due to main memory
access as each submatrix array is loaded into cache.

There is no corresponding performance drop when
parallel overhead is included because, between the
communication intensive gather and scatter steps, more than
twice as much computation is carried out for the MHD case
compared with the Navier-Stokes. The MHD problem has a
higher computation to communication ratio.

Efficient cache use for arbitrary elements

We now reconsider the incomplete parent method described
for the Navier-Stokes problem. Fortunately, the
optimisation described for the MHD problem can be
extended to include those submatrices that are stored once in
the incomplete parent method. For non-uniform finite
element domains, the submatrices C12, C21 etc can be
stored as C15, C51 etc above and further ‘do loops’ can be
computed.

Unrolling the matrix vector computation for each
submatrix enables efficient cache reuse and facilitates
reasonable, scalable performance, even for finite element
meshes with elements of arbitrary shape or material
property. Further extending the physics, for example by
including temperature dependent behaviour, will increase
the size of the element stiffness matrix by the addition of
further submatrices. If the methods described here are
employed, performance should not suffer as the complexity
of the physical model increases.

0

30

60

90

120

150

0 30 60 90 120 150

Number of processors

S
pe

ed
 u

p

0

10

20

30

40

50

0 20 40 60 80 100 120 140

Number of Processors

%
P

ea
k

P
er

fo
rm

an
ce

Matrix-vector only

Matrix-vector + gather
/scatter communication

CUG SUMMIT 2002 Proceedings 5

Convergence variability

A final performance issue will now be mentioned briefly. In
serial finite element analysis, any problem will take a fixed
number of iterations, say 100, to reach convergence. If the
program were executed several times, using the same data
file, the program would always take the same number of
iterations (100) to achieve the same result.

This was not true for the parallel program. The number
of BiCGStab(l) iterations required before the convergence
criterion was satisfied varied according to the number of
processors used. The observations were not always
repeatable. Repeated executions using the same data file
and the same number of processors did not always give
exactly the same numbers in the results output or exactly the
same number of BiCGStab(l) iterations.

The number of iterations could sometimes be less and
at other times be more than observed for the serial case,
increasing the computational efficiency or contributing to
the parallel overhead respectively!

The variability in iteration count was attributed to
numerical roundoff resulting from the non-deterministic
ordering of quantities summed across various processors. A
full explanation is given in Margetts [2002].

Case Study

At this time, the parallel program has only been used to
solve one very large Navier-Stokes problem to completion,
the lid-driven cavity. The problem is a well documented
test case for CFD algorithms. A cubic cavity contains a
fluid that is initially at rest. The top surface of the cavity or
‘lid’ is driven at a constant velocity. A steady state solution
is then sought for the motion of the fluid inside the cavity.

As the problem has a symmetry plane, only half needs
to be analysed. The domain was subdivided into a quarter
of a million finite elements, giving rise to 1 million grid
points where values for the pressure and velocity field were
to be calculated. With approximately 4 unknowns at each
grid point, the computational task was to solve a system of 4
million non-linear simultaneous equations.

Problem Size

256 000 20 node brick elements
1 000 000 Nodes or grid points
4 000 000 Simultaneous equations

It should be noted that the degree of refinement
described is not necessary to solve this particular problem.
The purpose of the exercise was to demonstrate that the
performance of the program, as indicated in figures 1 and 2
could be sustained for a large problem that was run to
completion.

Table 1 shows the performance data recorded using 256
processors on Green, CSAR’s 512 processor Origin 3800.

Table 1 Performance data versus Reynolds number

*includes communication

Visualising the results of the simulation required help
from a visualisation expert. Joanna Leng prepared the
demonstration using the developer’s edition of AVS
Express. Figure 5 shows streamlines with advected particles
and figure 6 shows slice planes through velocity magnitude
data. The arrow indicates the direction of the motion of the
lid.

Figure 5 Streamlines with advected particles

Re Parallel
Time

Minutes

Serial
Time
Days

%Peak* Gflops

10 20 2-3 29 60
100 47 8-9 29 60
1000 180 >1 month 29 60

CUG SUMMIT 2002 Proceedings 6

Figure 6 Sliceplanes through the velocity magnitude data

Conclusions

Direct numerical solution of the fully coupled
magnetohydrodynamic equations is generally considered too
computationally time consuming to be of practical use.
Although this may be true with serial machines, fast and
efficient, scalable parallel codes are readily achievable using
element by element methods. For large coupled
‘multiphysics’ problems that require parallel computation,
the method described becomes ‘competitive’ when
compared with other solution methods.

Future Objectives

The authors have developed more than a scalable, high
performance parallel program to solve the equations
presented here. The parallelisation strategy has been
generalized, enabling the development of a suite of finite
element programs for a wide variety of engineering
problems. These programs complement the serial programs
presented as teaching material in Smith and Griffiths (1998).

There are two aims to this work. Firstly, the programs
have been written to have the same general appeal as the
original serial programs, engaging the non-specialist in
parallel computation. This has been achieved by hiding the
parallel components in a library, making the parallel source
code strikingly similar to the serial. Secondly, these ‘driver’
programs will form the basis of a finite element module,
putting ‘reality’ (of material behaviour) into a virtual reality
prototyping design tool, currently under development in a
Northwest of England collaborative project.

Acknowledgements

The authors would like to thank Professor Ian Smith
(ian.smith@man.ac.uk), School of Engineering, University
of Manchester for his ongoing collaboration in this work
and Joanna Leng (joanna.leng@man.ac.uk), MVC,
University of Manchester for visualising the results of the
analysis. This work was supported by EPSRC award
number 98317397.

About the authors

Lee Margetts is a Research Associate at Manchester
Computing, specialising in parallel finite element analysis
and geotechnical engineering. He is currently working on a
real time virtual prototyping project, involving
interdisciplinary collaboration between the University of
Lancaster, UMIST, Salford University and industry. Mike
Pettipher is HPC User Services Team Leader, Manchester
Computing, working both for the HPC Services section of
the National Services Group and on projects managed by
Manchester Visualization Centre (MVC). Both authors can
be contacted at Manchester Computing, Kilburn Building,
The University of Manchester, Manchester, M13 9PL,
England and on email: lee.margetts@man.ac.uk and
mike.pettipher@man.ac.uk respectively.

References

Carey, G.F., Harle, C., Mclay, R. (1997) MPP solution
of Rayleigh –Benard – Marangoni flows. Technical Paper,
Super Computing (SC97).

Margetts, L. (2002) The convergence variability of
BiCGStab(l) in parallel magnetohydrodynamics. Proc 10th

ACME Symposium, Swansea, pp5-9.
Morandini, J. Couvat, Y.dT. Masse, P. Gagnoud, A.

(1994). Modelling of coupled thermo-electro-magneto-
hydrodynamic phenomena. Int. J. Comp. Appl. Tech., 7,
176-184.

Pettipher, M.A. and Smith, I.M. (1997) The
Development of a MPP Implementation of a Suite of Finite
Element Codes. Computer Science, No 1225, pp400-409

Smith, I.M. and Pettipher, M.A (1997) Finite Elements
and Parallel Computation in Geomechanics. Proc. ACME
Symposium, London, pp141-144.

Smith, I.M. and Griffiths, D.V. (1998) Programming
the Finite Element Method, Third Edition, Wiley and Sons.

Taylor,C.and Hughes,T.G. (1981) Finite Element
Programming of the Navier-Stokes Equation. Pineridge
Press Ltd, Swansea.

