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Abstract

High Performance Fortran permits to write parallel programs with much less programming effort than
by using standard communication libraries such as MPI or PVM. The performance of compiled HPF
programs is considered low, though. We show that a compiled HPF application will gain a substantial
runtime improvement if compilation incorporates properties of the hardware architecture into the final
program.

Our prototype HPF compiler “KarHPFn”1 inserts communication primitives of the Cray T3E into
the target programs. Programs compiled with KarHPFn run up to 30 times faster than their counterparts
compiled with Portland Group HPF.

1 Introduction

From the early nineties on, a lot of research ef-
fort has been spent to develop a parallel program-
ming environment which eases the implementation
of parallel Fortran applications. High Performance
Fortran (HPF) aims to support natural scientists
in their effort to write parallel solutions for their
ever growing computational problems. The resulting
HPF standard supports the data-parallel program-
ming paradigm, provides lots of features for data-
distribution, and permits to write parallel programs
with much less programming effort than with stan-
dard communication libraries, such as MPI or PVM.
But HPF is not in widespread use because of its
low runtime performance. Natural scientists develop
their proof of concept in HPF as a reference imple-
mentation to which they can compare their produc-
tion implementation written with MPI or PVM.

The HPF implementation of Portland Group PGI
on the Cray T3E is no exception to this rule. It
is mainly used for teaching purposes whereas the
real number-cruncher applications are still written
using standard communication libraries. So far,
the PGI HPF implementation has missed its target
of freeing the programmer from the burden of ex-
plicitly parallelizing applications when writing the
code. The PGI implementation of HPF relies on a
large and architecture independent communication
library. From an economics points of view, an ar-
chitecture independent library is reasonable because
it eases the portability of HPF across different plat-

forms. On the other side, this approach results in
a compiler that nobody uses because of the commu-
nication overhead this library incurs on the paral-
lel runtime. This situation is dissatisfying for both
interest-groups of the parallel architecture: the sup-
pliers and the developers. A supplier of a parallel ar-
chitecture with a sophisticated network interface is
faced with the situation that his parallel architecture
achieves best hardware performance figures but this
performance is devoured by the communication over-
head of the programming environment. And the pro-
grammer of a parallel platform has only two choices.
He can parallelize an application by hand which is
complicated and error prone but which results in a
fast parallel program, or, he can use HPF which is
easy to program but which results in a bad runtime
performance. Thus, the main drawback of common
HPF compilers is that they don’t support available
hardware properties which can decrease communi-
cation overhead and thus, increase the runtime per-
formance of the resulting executables compared to
hand written code.

This paper suggests the following approach: instead
of relying on large platform-independent communi-
cation libraries, specific hardware properties should
be incorporated into the compiled program to deliver
to the application all the network performance the
parallel architecture supplies. Our Karlsruhe HPF
compiler “KarHPFn” is a prototype compiler to
demonstrate the feasibility of this approach. KarH-
PFn inserts communication primitives of the Cray
T3E into the target programs.

1Karpfen [ karpf � n] without ’h’ is the german word for carp.
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In this paper, we present a comparison of the per-
formance of KarHPFn compiled programs with PGI
HPF on the Cray T3E. We studied 25 benchmarks
from a wide range of common algorithm classes.
The result is quite promising. All KarHPFn com-
piled programs outperformed their PGI HPF coun-
terparts. The KarHPFn programs achieve a per-
formance improvement of up to a factor of 30 for
reasonable local problem sizes where each processor
acts on at least 8 local data-elements. For smaller lo-
cal problem sizes the performance improvement is up
to three orders of magnitude higher, overall. Mea-
surements on 128 processors on the Cray T3E also
showed that KarHPFn compiled programs achieve a
speed-up compared to a single-processor execution
between 64 and 76. The PGI HPF compiled ver-
sions reach only speed-ups of 7 to 33.

KarHPFn uses software controlled access pipelining
with vector commands VSCAP for communication.
VSCAP hides network latency not only by compu-
tation but also by issuing prefetch requests to the
network. If all the prefetch and local computation is
done, VSCAP tries to access the first non-local data-
element. If the network latency is shorter than the
time spent for prefetch and local computation, VS-
CAP accesses the first non-local data-element with-
out any delay. Thus, the total communication over-
head reduces to the time spent for the prefetch in-
structions. If prefetch and access is done on a per-
element basis, we call this kind of communication
SCAP [14]. VSCAP reduces the prefetch overhead
further by using vector commands which issue L

prefetch requests at once. Earlier work about VS-
CAP reported hand coded results [11], first experi-
ences with KarHPFn [9], and an extensive evaluation
of KarHPFn [10].

The paper is organized as follows. The next sec-
tions describes the communication technique used
by KarHPFn. Section 3 describes the different com-
munication pipelines which KarHPFn inserts into
the target programs. Section 4 presents an overview
about KarHPFn and its architecture. The bench-
mark set is shown in section 5 and the experimental
results are discussed in section 6. Conclusions are
drawn in section 7.

2 KarHPFn’s communication

model

This section explains the communication technique
VSCAP used by KarHPFn.

2.1 Basic Requirement: Overlapping

Communication

The aim of VSCAP is to improve runtime of a
program by overlapping several communication re-
quests leading to a communication pipeline between
prefetch and access instructions.

Blocking Communication

For a better understanding of the basic principle of
VSCAP, it is first explained how communication is
done usually. The processor issues a request to the
network (downwards-arrows in figure 1) and waits
until the network replies (upwards-arrows). Only
then, the processor continues its execution and is-
sues a new request. This is done as long as the pro-
cessor requires remote data-elements to perform its
local part of computation. As the processor blocks
after each data request, we call this kind of com-
munication the blocking mode, see the upper half of
figure 1.

Overlapping Communication

Now, let us assume the processor could issue all its
communication requests and the network would be
able to process them in an overlapped fashion. This
would lead to a shorter waiting period for the pro-
cessor accessing the first and all other successive re-
mote data-elements. Finally, communication could
be performed faster compared to the above men-
tioned blocking mode. We call this kind of commu-
nication overlapping communication, see the lower
half of figure 1. To enable overlapping communica-
tion, the network interface has to provide a prefetch
buffer that decouples the processor from the network
execution, see figure 2.
The processor on the upper half of figure 2 issues
all its communication requests as prefetch instruc-
tions (downwards-arrows). Each prefetch reserves
an entry in the prefetch buffer (solid box in the mid-
dle). An entry invokes (dashed downwards-arrows)
network execution. The network reads the desired
remote data-element and writes it back in the re-
served entry of the prefetch buffer (dashed upwards-
arrows). The network execution-time for each re-
mote read operation (thin solid boxes) is the net-
work latency. After the processor has issued all its
communication requests, it accesses the remote data
elements from the prefetch buffer (upwards-arrows).
The prefetch buffer decouples processor from net-
work execution as it temporarily buffers the data-
elements written by the network until the proces-
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Figure 2: Usage of the Prefetch Buffer.

sor accesses them (buffer-time is shown with dotted
lines). The other task of the prefetch buffer is to
synchronize the processor with the network execu-
tion. The synchronization becomes necessary if the
processor wants to access a data-element that has
not been delivered by the network yet. In this case,
the processor is stalled until the value arrives. The
waiting time in the lower part of figure 1 denotes a
processor stall.

In summary, the processor forms a pipeline of
prefetch and access operations to and from the
prefetch buffer. As the prefetch and access opera-
tions are software controlled, we call this technique
software controlled access pipelining or SCAP, for
brevity. This sophisticated interaction between soft-
ware, processor, prefetch buffer, and network was

developed by Warschko [14].
VSCAP augments the above overlapping communi-
cation with vector commands for prefetch and ac-
cess. Instead of issuing a communication requests
for each single non-local data-element, the proces-
sor can prefetch and access L > 1 data-elements at
once. L is the vector length of the vector commands.
VSCAP’s vector commands reduce prefetch and ac-
cess overhead of SCAP and improve communication
time further.

2.2 Transformation Rules

This paragraph describes the techniques used in the
transformation from a data-parallel forall-statement
to VSCAP. The transformations are illustrated us-
ing the following simple forall-statement:
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FORALL i = 0 TO N-1
A[i] := B[q(i)];

END

The program fragment updates array A in parallel,
indexing array B with permutation q. A paral-
lelizing compiler maps the problem size N onto P

real processors (N > P ). This technique is called
virtualization. Assuming that P divides N each pro-
cessor emulates V = N

P
virtual processors within a

virtualization loop. Both A and B are distributed
over the P processors using the owner-computes
rule. Since the value of q(i) can not be determined
at compile-time, the compiler has to insert remote
memory accesses. The virtualization of the program
fragment is as follows, given the blocking execution
mode:

// Forall processors in parallel
FORALL j = 0 TO P-1
// Simulate V virtual processors
FOR k = j*V TO (j+1)*V-1
// Calculate remote address
addr := calculate address(B[q(k)]);
// Read remote data-element
A[k] := remote read(addr);

END

END

In the worst case, every processor issues V non-local
memory accesses. These stall the processor if the
network can not serve the desired values fast enough.
Hence, execution time of this loop is at least V times
the network latency.
The following transformation of the loop shows how
communication and computation can be overlapped:

FORALL j = 0 TO P-1
// Prefetch loop
FOR k=j*V TO (j+1)*V-1
// Calculate remote address
addr := calculate address(B[q(k)]);
// Start read request
prefetch(addr);

END

// Access loop
FOR k=j*V TO (j+1)*V-1
addr := calculate address(B[q(k)]);
// Access data-element
A[k] := access(addr);

END

END

In this transformation, the main loop is split into two
instances: a prefetch and an access (or calculation)
loop. Instead of stalling on a remote memory access

as in the blocking mode, the processor issues remote
memory prefetch requests. After the prefetch loop
is executed, the calculation loop accesses non-local
data-elements without waiting time (if the data is al-
ready present) from the prefetch buffer. This is the
code for SCAP. Ideally, program speed-up is about
(V −1) times the network latency because there is at
most one waiting period (arrival of first data item)
compared to V waiting times in a blocking network.

VSCAP improves the above code with vector access
commands further. Vector prefetch operations can-
not be used due to the dynamic prefetch pattern
caused by the permutation q. Therefore, only vec-
tor accesses are possible because of the regular array
access A[k].

inc := 1;
FORALL j = 0 TO P-1
// Prefetch loop
FOR k=j*V TO (j+1)*V-1
// Calculate remote address
addr := calculate address(B[q(k)]);
// Start read request
prefetch(addr);

END

// Vector access loop
FOR k=j*V TO (j+1)*V-1 STEP L

addr := calculate address(B[q(k)]);
// Access L data-elements
vector access(A[k],inc ,addr);

END

END

For brevity, we assume that L divides V . Oth-
erwise, additional element wise access operations
would have to be used to get the remaining V mod L

data-elements that do not fill a vector of length
L. The access loop is blocked with block size L.
Within the loop, vector access(A[k],inc ,addr)

copies L entries from the prefetch buffer starting at
address addr to the memory locations denoted by
A[k] + i ∗ inc , for 0 ≤ i < L.

If the number of non-local memory accesses is too
large to fit into the prefetch buffer, VSCAP’s trans-
formation rule uses a three loop execution pattern
where the middle loop alternates between access and
prefetch instructions. This transformation is shown
in [10].
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3 Types of communication

pipelines

3.1 Vector Strategies

In principal, vector commands for prefetching are
only useful if displacements of the elements are
equidistant and known at compile-time. Otherwise,
if element addresses can be computed only at run-
time as in dynamic communication patterns or if
the distances of elements vary on a per-element
basis, single-element prefetch instructions are used
throughout the whole prefetch loop. For this reason
we introduce the notion of a vector strategy.

(p, a)-vector strategy

A (p, a)-vector strategy declares usage of vec-
tor operations for prefetch (p ≥ 1) and access
(a ≥ 1) operations. Assuming fixed vector
lengths p, a ∈ {1, L} there are four possible
vector strategies:

Vector strategy Explanation

(1,1) Element wise prefetch
and access operations

(1,L) Element operations for
prefetch but vector access

(L,L) Vector operations both
for prefetch and access

(L,1) Vector prefetch but element
wise access operation

The following three sections describe the first three
vector strategies. The (L,1)-vector strategy is an ex-
ception compared to the other strategies. It would
be applied in assignments such as A[q(i)] := B[i]

where the left hand side index q(i) could denote non-
local memory addresses. But this leads, however,
to remote write operations which spread the data-
elements across all processing elements. This vector
strategy is not considered further, because the over-
lapping of several remote write operations are al-
ready done and well understood in message passing
architectures. As the above proposed overlapping
network model can be augmented naturally by re-
mote write operations, message passing techniques
can be applied.

3.2 (L,L)-vector strategy

Vector operations can be used both for prefetch and
for access if the location of data-elements can be de-
termined at compile-time. Overall, there are three
different applications of the (L,L)-vector strategy in

KarHPFn: the one-block and multi-block pipelines
and reductions.

3.2.1 One-block pipeline

A one-block pipeline reads remote data-elements
from only one remote network node. It is used
if static analysis shows that processors need data-
elements from only one remote network node to
perform their part of the global computation. For
example, the one-block pipeline is mainly used
in n-dimensional nearest neighborhood applications
(AC7, see 5). Figure 3 shows the resulting commu-
nication pattern of the one-block pipeline for one of
the processors.

3.2.2 Multi-block pipeline

Multi-block pipelines are mainly used to cope with
remote data-elements for whom a processor has to
access several remote network nodes. The multi-
block pipeline consists of several one-block pipelines
to collect the data from the respective nodes. Affine
communication patterns B[a ∗ I + b], where a and b

are variables that do not change their values during
the execution of the communication are the main ap-
plication of the multi-block pipeline. Figure 4 shows
the resulting communication pattern of the multi-
block pipeline.

3.2.3 Reductions

During reductions, each processor initially calculates
its local part of the global result. The local P results
are then combined to the global result of the reduc-
tion. The collection of local results is performed in
log2(P ) steps. And finally, each processor accesses
the global result and loads it into its local mem-
ory. Figure 5 depicts the associated communication
schedule.

The initial proposal of SCAP [14] suggests an in-
creased fan-in for the reduction to obtain more re-
mote data-accesses to hide network latency with.
Measurements on the T3E showed a fan-in of f = 16
to be optimal. However, measurements with larger
values for f lead to impractical results such that the
value of f = 16 was used throughout the measure-
ments.

The first logf (P ) communication steps are per-
formed with one-block pipelines. But now, not the
array index is varied but the processor number.
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Figure 3: Communication pattern for one-block pipeline.
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Figure 4: Communication pattern for multi-block pipeline.

3.3 (1, L)-vector strategy

Element wise prefetching is done in dynamic com-
munication patterns, e.g. in indirect indexed array
access like the one shown in section 2.2. Figure 6
shows the resulting communication pattern.

3.4 (1, 1)-vector strategy

This strategy implements SCAP. The (1, 1)-vector
strategy is used for communication patterns that do
not allow any vector commands. They are charac-
terized in varying element distances for prefetch and
access which can not be computed at compile-time,
e.g. in arbitrary block-cyclic distributions. Figure 6
depicts the communication pattern again, but now,
the displacements of the elements in the target array
are not equidistant anymore.

4 KarHPFn

This section presents an overview of the prototype
HPF compiler of Karlsruhe KarHPFn, explains the
structure of the resulting executables, and summa-
rizes supported HPF language features.

4.1 Overview

KarHPFn is a source-to-source compiler transform-
ing a data parallel HPF program into an executable
Fortran 90 node program that uses e-register opera-
tions for communication [12]. Its program transfor-
mations focus on the forall-statement.

KarHPFn is based on the ADAPTOR [2] front-end
developed by Brandes at the German National Cen-
ter for Computer Science (GMD). All subsequent
analysis and transformation phases operate on the
abstract syntax tree built by the front-end. The de-
pendence and partitioning analysis phases use com-
mon techniques to perform their tasks. A detailed
description of KarHPFn’s transformation steps can
be found in [10].

4.2 Structure of node program

In contrast to the Portland Group HPF compiler
KarHPFn does not rely on a large communication li-
brary. Though, the final Fortran 90 node program is
linked together with two libraries, both libraries are
rather small and contain only initialization code and
optimized versions of the one-block and multi-block
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Figure 5: Communication schedule for reduction with a fan-in of 2.

pipelines. The following figure depicts the structure
of a node program.

library library

Application

Network Interface

Comm− Core−

Application This part of the program contains all
application specific code such as calculation

loops and specific communication pipelines,
e.g. pipelines for the (1, L)-vector strategy.

Comm-library The communication library con-
sists of application independent implemen-
tations of the one-block and multi-block
pipelines.

Core-library The core library contains one
method to initialize the e-registers. It is called
once at startup.

Network interface The network interface is built
up of e-registers which lie in the I/O space of
a local processor.

Proc 0 Proc P−1

Source array

Target array

Figure 6: Communication pattern for (1, L)- and (1, 1)-vector strategy.
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4.3 Supported language features

KarHPFn implements most features of Subset-HPF
[5]. The only restriction of the standard af-
fects the align-directive as affine alignments are
not supported. Additionally, the Fortran 90 re-
duction functions XXX PREFIX, XXX SCATTER,
XXX SUFFIX are also not implemented. Where
necessary the author inserted these functions manu-
ally but tried to reproduce the effect of an automatic
compilation.

5 Benchmarks and their Im-

plementation

The set of benchmarks is categorized into algorithm
classes (AC). These algorithm classes are presented
first. The benchmarks are described subsequently.

5.1 Algorithm Classes

The distinctive properties of each AC are the rela-
tionship of communication (TComm) to computation
time (TCalc) and the data access pattern. Table 1
gives an overview. The columns present the differ-
ent amount of communication while the rows distin-
guish communication patterns. Each entry presents
the AC, the benchmarks within this class, and the
vector strategy used by the compilation. The ACs
are characterized as follows.

AC1: Reductions are a common operation in par-
allel applications. The reduction in AC1 is
structured in such a way that each processor
performs a local reduction and then collects
the results from other processors. Thus, the
amount of communication is merely depending
on the number of processors and small com-
pared to computation.

AC2: This reduction is not implemented as effi-
ciently as the one of AC1. Rather than a local
reduction each array element collects results
from log(N) neighbors, where N is the size of
the array. Thus, communication grows with
the size of the array.

AC3: This AC deals with indexed arrays. The in-
dex offsets are constants.

AC4: The index offsets in these indexed arrays
are arbitrary integer variables or the data-
distribution involves a lot of communication.

AC6: This AC represents dynamic communication
caused by indexing. The indexes are computed
dynamically from other data.

AC7: This AC deals with blocked nD-grids in which
communication is limited to the border of the
blocks.

AC9: In this kind of scatter operations, local data
has to be spread to a subset of the processing
elements.

AC10: These scatter operations spread data to all
processing elements.

AC5 and AC8 are empty. For AC5, the author did
not find an appropriate benchmark and for AC8,
there exists no benchmark because the proportion
of computation to communication is always high in
nD-grid applications.

5.2 Benchmarks

Despite the empty ACs, the benchmark set repre-
sents a wide range of common parallel applications.
Most of the benchmarks are data-parallel versions of
the Livermore loop kernels (LL). For their descrip-
tion and parallelization see [4, 14]. Rotate imple-
ments a cyclic shift of an array where a cyclic distri-
bution leads to the large amount of communication.
Indirect is the example kernel from section 2.2. Fire
is a fluid dynamics package from AVL List using
the method of conjugate gradients on unstructured
meshes [3]. Jacobi and Laplace perform successive
over-relaxation on a 2D-grid. PDE1 is a 3D-grid
Poisson solver using red-black relaxation. Veltran
is an application from geophysics that uses veloc-
ity analysis to calculate density of earth layers [7].
Veltran uses the method of conjugate gradients.

Most of the benchmarks contain only one of the ac-
cess patterns of Table 1. The benchmarks contain-
ing more than one access pattern are classified into
the AC that dominates its runtime behavior. Thus,
LL13, LL14, and LL23 are classified into AC2; LL6
into AC4; Laplace into AC7; and Fire into AC6.

The benchmarks were compiled to the following ver-
sions.

KarHPFn does prefetch and access with vector op-
erations. 16 e-register vectors (of 8 e-registers
each) are used to allow a total number of 128
outstanding communication requests. 128 e-
registers suffice to hide network latency and to
get maximum throughput [12].
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Table 1: Data access patterns and the associated ACs.
Access Pattern TComm < TCalc TComm ∼ TCalc

Reduction

AC1:
LL3, LL4, LL24
(L,L)

AC2:
LL2, LL5, LL11,
LL13, LL14, LL19,
LL23
(L,L)

Indexed Arrays

AC3:
LL1, LL7, LL8
LL12, LL15, LL18
(L,L)

AC4:
LL6, Rotate
(L,L)

Indirect Indexed Arrays
AC5:
empty

AC6:
Indirect, Fire
(1,L)

nD-grid

AC7:
Jacobi, Laplace,
PDE1
(L,L)

AC8:
empty

Scatter

AC9:
LL21
(L,L)

AC10:
Veltran
(L,L)

PGI HPF represents the executables of the Port-
land Group HPF compiler [1]. PGI HPF is
the commercial HPF compiler available for the
Cray T3E.

Both compilers got the same HPF-source. Standard
optimizations were turned on for both PGI HPF and
for the Fortran 90 compilation step of KarHPFn.
Time was measured with the real-time clock (RTC ).
Except for PDE1, Fire, and Veltran, runtime was
measured for different problem sizes while the num-
ber of processors was kept constant. The remaining
three benchmarks were measured with a fixed prob-
lem size and the number of processors was varied
from 2 to 128. All other benchmarks were measured
on 32 processors except for LL1, LL7, LL13, LL21,
Jacobi and Laplace which were ran on 64 processors.

6 Results

The runtimes of the KarHPFn and PGI HPF ex-
ecutables are compared. The results of each algo-
rithm class is presented in a different section. Each
section contains one or two plots, depending on
the number of the benchmarks within the algorithm
class. The plots show for every benchmark the rel-
ative runtime improvement factors of the KarHPFn

executables compared to the PGI HPF executables.
The x-axis of a plot shows the virtualization while
the y-axis presents the comparison to PGI HPF.
Numbers larger than one on the y-axis mean a run-
time improvement and numbers smaller than one a
runtime loss compared to PGI HPF. Therefore, the
PGI HPF version of each benchmark would have a
straight solid line at one (this line is not shown in
the plots).

The following sections discuss all but one of the al-
gorithm classes of section 5. The discussion of AC10
is omitted as the only member is shown in 6.8 where
the number of processors is varied and not the prob-
lem size.

6.1 Algorithm Class AC1

Algorithm class AC1 contains benchmarks which
mainly use reductions. For example, benchmark
LL3 calculates the inner product of two vectors. The
number of non-local data-accesses is logf (P ) + 1 for
each processor. Figure 7 shows the relative runtime
improvement factors.

The KarHPFn versions of the benchmarks achieve
only for small to medium sized virtualizations (V ≤
1000) a noteworthy runtime improvement compared
to PGI HPF. This is caused by the constant com-
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Figure 7: Runtime improvement for AC1.

munication overhead which is large compared to the
small amount of calculation for small virtualizations
and which almost diminishes for large virtualiza-
tions. LL24 achieves the highest runtime improve-
ment factor of 6 at a virtualization of V = 16.

6.2 Algorithm Class AC2

Benchmarks in AC2 are dominated by reductions
whose communication overhead increases with the
problem size. Due to the large amount of non-local
data-accesses, KarHPFn programs can hide network
latency more efficient than with benchmarks of AC1.
Figure 8 depicts the runtime improvement factors of
the different benchmarks.

The left plot shows the runtimes of the programs
generated completely by KarHPFn, whilst the com-
pilation of the benchmarks in the right plot in-
volved some manual transformation, because LL13
and LL14 use the HPF SUM SCATTER function
which is yet not supported by KarHPFn, see 4.3.

The KarHPFn programs in the left plot achieve best
relative performance at medium sized virtualizations
(100 ≤ V ≤ 10000). These benchmark version are
up to 8 to 24 times faster than their counterparts
compiled with PGI HPF.

6.3 Algorithm Class AC3

Communication of benchmarks in AC3 are charac-
terized by indexed array accesses. For example, LL1
is a kernel which has at most 11 non-local data-
accesses if arrays are distributed in a block-wise
fashion. As the amount of communication is fixed

for these benchmarks, the relative performance im-
provement of the KarHPFn compiled versions com-
pared to the PGI HPF versions diminishes as virtu-
alization is increased. Figure 9 shows the results.
As for AC1, KarHPFn programs in the left plot
achieve only for small virtualizations (V ≤ 100) a
substantial runtime improvement compared to their
PGI HPF counterparts. This is caused by the small
proportion of communication to computation which
almost diminishes for large virtualizations. The two
benchmarks on the right side of figure 9 show a
slightly different result. Whilst LL7 shows almost
the same behavior as the benchmarks on the left
plot, LL1 starts with a relatively small runtime im-
provement factor and increases to a factor of 10. LL7
starts with an improvement factor of 11 and dimin-
ished to a factor of about 9.
LL7 achieves the best relative runtime improvement,
overall. At a local-problem size of 1 local data-
element, LL7 is 1750 times faster than the PGI HPF
version. LL18 shows a quite similar behavior at a
virtualization of V = 1, as it is 377 times faster than
its PGI HPF counterpart.

6.4 Algorithm Class AC4

Benchmarks of AC4 also possess an indexed array
access. But now, the amount of communication is
much higher as compared to AC3 due to a different
access pattern or a different data-distribution. For
example, Rotate implements a cyclic shift of an ar-
ray which is distributed in a cyclic fashion. Figure 10
depicts the result of both benchmarks of AC4.
The ascending runtime improvement factor of both
benchmarks is a result of the linear increasing
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Figure 9: Runtime improvement for AC3.

amount of communication for growing virtualiza-
tions. The KarHPFn compiled version of Rotate
achieves a maximum runtime improvement factor of
30 compared to the PGI HPF version.

6.5 Algorithm Class AC6

Algorithm class AC6 specifies algorithms which con-
tain indirect indexed array accesses. The main char-
acteristics of these array accesses are that they gen-
erally can not be computed at compile time. PGI
HPF uses the inspector-executor technique [8, 13]
to deal with this kind of irregular communication
pattern, while KarHPFn inserts its normal prefetch
instructions which can also access data-elements in
local memory. This kind of KarHPFn’s generated
data-access is called speculative prefetch as the tar-
get of a prefetch operation does not necessarily have

to be remote. The left plot in figure 11 shows only
the results of Indirect. The results for the other
benchmark Fire is presented in 6.8. Indirect is the
running example of 2.2.
The runtime improvement factor of Indirect in-
creases for larger virtualization. It reaches its maxi-
mum with 4.8 at V = 2048. Relative performance is
not as high as for AC4 because now, KarHPFn in-
serts pipelines with a (1, L)-vector strategy. Hence,
Indirect uses fast e-register vector operations only
for the access part of the pipeline. Prefetching is
done with element-wise operations.

6.6 Algorithm Class AC7

AC7 contains benchmarks using nearest neighbor-
hood communication in a block-wise distributed nD-
grid. For example, Jacobi calculates for each entry
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Figure 10: Runtime improvement for AC4.
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Figure 11: Runtime improvement for AC6 (left) and AC7 (right).

in the grid the arithmetic mean of its four neighbors.
The right plot in figure 11 depicts the results of Ja-
cobi and Laplace. The results of PDE1 are shown in
6.8. The virtualization on the x-axis denotes the size
of one dimension of the local quadratic matrices.

The execution of both benchmarks is characterized
by two steps. During the first step, the communica-
tional step, adjacent remote field regions are copied
into so called shadow regions [6]. The second step
involves computation on the augmented local fields.
As the amount of computation is quadratic com-
pared to the linear amount of communication, the
communicational part of the benchmarks decreases
as the problem sizes increases. Both benchmarks
show a decrease in the runtime improvement factor
for increasing virtualizations. For example, Jacobi

reaches a runtime improvement of 11 with local ma-
trices of size 7×7. This improvement almost dimin-
ishes for virtualizations of 2047× 2047.

For small virtualizations V ≤ 4 Jacobi shows a rela-
tive runtime improvement factor of up to 1282 which
is comparable to the behavior of LL7 and LL18 of
AC3.

6.7 Algorithm Class AC9

Execution of AC9 involves scatter operations in
which data-elements have to be distributed from one
node to a subset S of all nodes. In message-passing
architectures, scatter operations are normally per-
formed using log(|S|) communication steps to re-
duce the amount of communication overhead. In
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contrast, VSCAP makes this reduction obsolete be-
cause each processor prefetches its part from remote
nodes. Though, the VSCAP way of doing scatter
operations increases the pressure on the network in-
terface from whom data is scattered, we measured
no decrease in network bandwidth while scattering
data this way. The only benchmark in AC9 LL21
implements a matrix multiplication using the mat-
mul -function. Figure 12 shows the result for LL21.
The virtualization on the x-axis denotes one dimen-
sion of the local quadratic matrices.
As the proportion of communication to computa-
tion decreases LL21 shows quite the same runtime
improvement factor behavior as the benchmarks in
AC7.

6.8 Variation of number of processors

For the remaining three benchmarks (PDE1, Fire,
and Veltran) the number of processors was varied
while the problem size was kept constant. These
tests aim to show the scalability of VSCAP on up to
128 processors. The x-axis of figure 13 accounts for
the varying number of processors.
Two facts can be seen from figure 13. First, all three
KarHPFn versions run faster than their PGI HPF
counterparts, and second, the runtime improvement
factor increases as the number of processor increases.
The last statement can also be put another way: the
less the virtualization the faster the KarHPFn ver-
sions compared to the PGI HPF versions. The Fire
(PDE1, Veltran) version of KarHPFn is at its best
2.9 (9.5, 4.7) times faster than the PGI HPF version.
Compared to a single-processor execution of the
benchmarks, the six programs achieve the following
speed-ups on 128 processors (these figures can not
be deduced from figure 13).

Program Version Speed-up
on 128 procs.

Fire
KarHPFn 79
PGI HPF 33

PDE1
KarHPFn 64
PGI HPF 7

Veltran
KarHPFn 76
PGI HPF 15

7 Conclusions

This study presented a comparison of Portland
Group’s HPF compiler and the Karlsruhe HPF com-
piler KarHPFn. KarHPFn uses VSCAP for commu-
nication whose communication pipelines are inserted

directly into the program. The executable program
uses communication features of the Cray T3E with
only minimal overhead and hence, gains substantial
performance improvements compared to executables
generated by the PGI HPF compiler.
The comparison of KarHPFn and PGI HPF was
done on a set of 25 benchmarks from a wide range
of common algorithm classes. The KarHPFn com-
piled programs run up to 30 times faster than their
PGI HPF counterparts for reasonable virtualizations
of V ≥ 8. For small virtualizations KarHPFn pro-
grams are up to 1700 times faster than their PGI
HPF counterparts.
Compared to a single-processor execution, measure-
ments on 128 processors showed a speed-up of the
KarHPFn generated programs ranging between 64
and 79 while the PGI HPF executables reached num-
bers from 7 to 33.
KarHPFn is a research prototype and far away from
being a commercial product. Nevertheless, the per-
formance of its generated programs should be a mo-
tivation for all interested in HPF to decrease execu-
tion times of HPF such that is usable for up to day
problems in scientific computing.
The web page http://www.ipd.uka.de/KarHPFn

provides further information about KarHPFn and
some additional optimization techniques for the
T3E.
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