
Using cpusets on a

256 CPU Origin 3800

Jim Glidewell & Barry Sharp

Boeing Shared Services Group

james.glidewell@boeing.com

The blessing and curse of ccNUMA
�� Large memory available for single or multi-CPU processesLarge memory available for single or multi-CPU processes

�� Simple, very efficient MPI data sharingSimple, very efficient MPI data sharing

�� Relatively low cost compared to similarly sized Relatively low cost compared to similarly sized ““flatflat”” memory systems memory systems

�� Memory access speed depends on Memory access speed depends on ““nearbynearby”” memory memory

�� The larger the system, the more critical data locality becomesThe larger the system, the more critical data locality becomes

�� It is essential to not oversubscribe CPU resources, or data locality mayIt is essential to not oversubscribe CPU resources, or data locality may
be be ““permanentlypermanently”” lost lost

�� Very hard to detect when performance is degraded due toVery hard to detect when performance is degraded due to
oversubscription oversubscription and/or memory localityand/or memory locality

�� Increased memory latency is Increased memory latency is ““hiddenhidden”” in increased CPU time in increased CPU time

�� Router traffic gives some indication, but varies by application mixRouter traffic gives some indication, but varies by application mix

The cpuset solution

�� Introduced at IRIX 6.5.8Introduced at IRIX 6.5.8

�� Allows dynamic software partitioning of the machineAllows dynamic software partitioning of the machine

�� Keeps data and processors co-located,Keeps data and processors co-located, eliminates
interference from other jobs on the system

� Originally tied to Miser, which had rather mixed reviews

� Appeared to be little used in the field, with a few large &
notable exceptions (NAS)

� Seemed to add undesirable complexity and rigidity

� Didn’t seem worth the effort on our 64 CPU Origin 3800

Factors which drove us to examine
cpusets
�� Recognition that our upgrade to 256 CPUs would makeRecognition that our upgrade to 256 CPUs would make

memory locality issues more criticalmemory locality issues more critical

�� Huge variations in run times for one of our Huge variations in run times for one of our ““workhorseworkhorse””
aeroaero applications (Overflow) applications (Overflow)
�� CPU time on an identical case varied between 90,000-200,000CPU time on an identical case varied between 90,000-200,000

secondsseconds

�� Even larger variation seen by end users on similar casesEven larger variation seen by end users on similar cases

�� Reports of significant performance improvements onReports of significant performance improvements on
Overflow at NAS using Overflow at NAS using cpusetscpusets

�� The choice of The choice of PBSPro PBSPro as our batch scheduling systemas our batch scheduling system

�� Encouragement by onsite SGI analysts with reasonableEncouragement by onsite SGI analysts with reasonable
comfort and familiarity with comfort and familiarity with cpuset cpuset usageusage

Our early experiments with cpusets
�� Overflow test case - consumed between 90,000 and 200,000 CPUOverflow test case - consumed between 90,000 and 200,000 CPU

secondsseconds

�� Initial testing simply created a Initial testing simply created a cpusetcpuset ““on the flyon the fly”” and assigned process and assigned process
to itto it

�� LittleLittle improvement over non-cpuset runs - 87,000 - 186,000 CPU seconds

� Suspected interference with existing processes resident in the designated
P-bricks

�� Chose 87,000 seconds as a goal for consistent run timeChose 87,000 seconds as a goal for consistent run time

�� Consistent times were only achievable when we allowed the Consistent times were only achievable when we allowed the cpusetcpuset to to
““dry outdry out”” by defining the by defining the cpusetcpuset and then leaving it idle for up to 24 and then leaving it idle for up to 24
hours prior to executing the jobhours prior to executing the job

�� Given this experience, we concluded that the only way to ensure goodGiven this experience, we concluded that the only way to ensure good
performance was to restrict performance was to restrict all all processes to a processes to a cpusetcpuset

Interim solutions

�� Given the rather strong evidence that our failure to adoptGiven the rather strong evidence that our failure to adopt
cpusetscpusets was having a severe impact on one of our key was having a severe impact on one of our key
customers, we felt we needed to offer customers, we felt we needed to offer somethingsomething in this in this
areaarea

�� Did not want to use Did not want to use PBSPro PBSPro managed managed cpusetscpusets, as , as PBSProPBSPro
had the unfortunate behavior of creating a 4-CPU (onehad the unfortunate behavior of creating a 4-CPU (one
node) node) cpuset cpuset for a single-CPU jobfor a single-CPU job

�� Luckily, we had just increased our capacity by 4X (64 ->Luckily, we had just increased our capacity by 4X (64 ->
256 CPUs), which gave us some room to experiment256 CPUs), which gave us some room to experiment

Interim solution #1
�� Interim solution #1aInterim solution #1a

�� Establish a fixed 64 CPU Establish a fixed 64 CPU cpusetcpuset ((overaovera))

�� Let the Overflow users manage this Let the Overflow users manage this cpuset cpuset among themselvesamong themselves

�� Users manually assigned their main program to the Users manually assigned their main program to the cpusetcpuset within the PBS within the PBS
batch jobbatch job

�� This didnThis didn’’t work all that well...t work all that well...

�� Interim solution #1bInterim solution #1b
�� Provide a script which checked whether the Provide a script which checked whether the ““overaovera””cpuset was idle

� “idlecpuset” returns the name of an idle cpuset (if available) and null
otherwise

� User PBS scripts could then test for an available cpuset, and either assign their
main program to a cpuset, run outside a cpuset, or exit

� This allowed for the possibility of multiple cpusets, and allowed users to make
use of cpusets without coordinating among themselves

Interim solution #2
�� Multiple fixed Multiple fixed cpusetscpusets, created on demand, created on demand

�� Modified Modified ““idlecpusetidlecpuset”” script to either: script to either:
�� Return the name of an idle Return the name of an idle cpusetcpuset (if one was available) (if one was available)

�� Issue a request that a Issue a request that a cpusetcpuset be created (via a flag file), then wait and be created (via a flag file), then wait and
retest for an idle retest for an idle cpusetcpuset in a few minutes in a few minutes

�� Separate Separate ““createcpusetcreatecpuset”” daemon daemon
�� Monitors Monitors cpuset cpuset statusstatus

�� Creates Creates cpuset cpuset upon requestupon request

�� Deletes idle Deletes idle cpusetscpusets

�� This solution actually worked fairly well, although:This solution actually worked fairly well, although:
�� It restricted the users to a single It restricted the users to a single cpuset cpuset size (64 CPUs)size (64 CPUs)

�� CpusetsCpusets were being created were being created ““on top ofon top of”” existing processes in many cases, existing processes in many cases,
resulting in less that optimal performanceresulting in less that optimal performance

The “Flythru” cpuset
�� Flythru Flythru is a Boeing developed system for sharing is a Boeing developed system for sharing CatiaCatia geometry data geometry data

with Unix-based workstationswith Unix-based workstations

�� We were asked to host We were asked to host Flythru Flythru on our Origin 3800on our Origin 3800

�� The two major functions of a The two major functions of a Flythru Flythru server are file sharing (usingserver are file sharing (using
NFS) and NFS) and ““UpdateUpdate”” which synchronizes the local data models with the which synchronizes the local data models with the
reference reference CatiaCatia database database

�� Our focus on Our focus on cpusets cpusets hadhad been protecting a single application from the been protecting a single application from the
““noisenoise”” of the other processes on the system of the other processes on the system

�� We discovered fairly late in the migration that Update generatedWe discovered fairly late in the migration that Update generated
anywhere from 10K to several 100K processes per hour!anywhere from 10K to several 100K processes per hour!

�� This process count has a fairly disastrous effect on other processes,This process count has a fairly disastrous effect on other processes,
““stirring the potstirring the pot”” and effectively randomizing process placement on and effectively randomizing process placement on
CPUsCPUs

�� We immediately created a single-node (4 CPU) We immediately created a single-node (4 CPU) cpuset cpuset to hold theto hold the
Update processes, which has mitigated the issue (for the most partUpdate processes, which has mitigated the issue (for the most part……))

Moving cpusets into the mainstream -
PBSPro 5.2

�� We had deferred the management of We had deferred the management of cpusets cpusets by by PBSPro PBSPro until auntil a
solution to the solution to the ““single CPU jobsingle CPU job”” dilemma was available dilemma was available

�� Veridian Veridian offered a solution to that issue with offered a solution to that issue with PBSProPBSPro 5.2 - 5.2 - ““sharedshared
cpusetscpusets””

�� With this feature, With this feature, ““smallsmall”” jobs will be placed in a shared jobs will be placed in a shared cpusetcpuset with as with as
many as 3 other jobs (on a 3800, depends on jobmany as 3 other jobs (on a 3800, depends on job’’s memory and s memory and cpucpu
requirement)requirement)

�� This allows a single system to run a mix of single-This allows a single system to run a mix of single- cpucpu and parallel jobs and parallel jobs
without significant concern about idle or wasted resourceswithout significant concern about idle or wasted resources

�� Based on continuing needs of our Overflow users for more flexibleBased on continuing needs of our Overflow users for more flexible
cpusetscpusets, and with the expectation that the transition to PBS-managed, and with the expectation that the transition to PBS-managed
cpusetscpusets would be essentially transparent to our other users, we decided would be essentially transparent to our other users, we decided
to move forward with to move forward with PBSPro PBSPro 5.25.2 and cpusets……

Our initial configuration

�� A 12 CPU, 18GB boot A 12 CPU, 18GB boot cpuset cpuset (handles all processes except(handles all processes except
those specifically assigned to another those specifically assigned to another cpusetcpuset))

�� A 4 CPU, 6GB A 4 CPU, 6GB ““flythruflythru”” cpuset cpuset (to isolate the (to isolate the FlythruFlythru
update application)update application)

�� Remaining 236 CPUs & 354GB memory scheduled byRemaining 236 CPUs & 354GB memory scheduled by
PBSPro PBSPro using using cpusetscpusets

�� PBSProPBSPro 5.2, shared 5.2, shared cpusets cpusets enabled, one local schedulingenabled, one local scheduling
mod, configuration defaults used whenever possiblemod, configuration defaults used whenever possible

�� IRIX version 6.5.12fIRIX version 6.5.12f

A Rough Start…
�� After a moderate amount of testing on our 4-CPU test partition, andAfter a moderate amount of testing on our 4-CPU test partition, and

further limited testing on the 252 CPU partition, we installed PBS �Profurther limited testing on the 252 CPU partition, we installed PBS �Pro
5.2 with 5.2 with cpusets cpusets enabledenabled

�� System was heavily loadedSystem was heavily loaded

�� We encountered a number of problems initiallyWe encountered a number of problems initially

�� Many of the problems were greatly aggravated by a difficult-to-Many of the problems were greatly aggravated by a difficult-to-
diagnose hardware problem which caused multiple system outagesdiagnose hardware problem which caused multiple system outages
over a weekover a week’’s times time

A Rough Start (continued)

�� Since the installation, we have seen a number of issues,Since the installation, we have seen a number of issues,
including:including:
�� Failure to schedule more than 1/2 of the machine (workaround - scheduleFailure to schedule more than 1/2 of the machine (workaround - schedule

by by ssinodesssinodes, rather than , rather than memmem & & cpucpu))

�� Job aborts on shared nodes, due to Job aborts on shared nodes, due to ““out of memoryout of memory”” conditions conditions
(workaround - change the (workaround - change the cpuset cpuset creation flags from creation flags from ““POLICY_KILLPOLICY_KILL”” to to
““POLICY_PAGEPOLICY_PAGE””))

�� Jobs stuck in Jobs stuck in ““EE”” state (workaround - kill state (workaround - kill server with a “qterm -t quick”
and restart server daemon)

� Failure to properly recover shared cpusets after restart of system or
pbs_mom

� User concerns about reduced overall system throughput

� Excessive CPU consumption by pbs_mom

� Increased swapping

�� To their credit, theTo their credit, the PBSPro PBSPro support staff have been extremely support staff have been extremely
responsive and helpful in trying to get us through this periodresponsive and helpful in trying to get us through this period

The need for visibility
�� Prior to the Prior to the ““shared shared cpusetcpuset”” feature, there was essentially a 1-to-1 feature, there was essentially a 1-to-1

correspondence between PBS jobs and correspondence between PBS jobs and cpusetscpusets - but this is no longer - but this is no longer
the casethe case

�� Given that is no longer the case, we really felt we needed a tool whichGiven that is no longer the case, we really felt we needed a tool which
would display the relationships between PBS jobs and would display the relationships between PBS jobs and cpusetscpusets, hence, hence
““cpurepcpurep””was createdwas created

�� ““cpurepcpurep”” provides 3 blocks of data: provides 3 blocks of data: cpusets cpusets, PBS jobs, and overall, PBS jobs, and overall
subscriptionsubscription

�� This tool has been very valuable to us in monitoring and debuggingThis tool has been very valuable to us in monitoring and debugging
PBS problems, and in understanding the PBS problems, and in understanding the ““sharedshared cpuset cpuset”” scheduling scheduling
methodologymethodology

�� In addition, we have created a Performance Co-Pilot tool which allowsIn addition, we have created a Performance Co-Pilot tool which allows
up to view the CPU and memory usage in a up to view the CPU and memory usage in a cpuset cpuset - - ““pmgcpusetpmgcpuset””

�� We are exploring other methods of tracking and displaying informationWe are exploring other methods of tracking and displaying information
about about cpusetscpusets and their resource utilization and their resource utilization

Cpurep output

origin 11%origin 11% cpurep cpurep

cpuset cpus procscpuset cpus procs PBS_jobs PBS_jobs
------ ---- ----- -------------- ---- ----- --------
boot 12 377boot 12 377
flythruflythru 4 56 4 56
41013.or 64 66 41013(xxx7307)41013.or 64 66 41013(xxx7307)
40497.or 4 7 40523(yyy2754)40497.or 4 7 40523(yyy2754)
40550.or 4 12 40576(xxx7307) 41014(tecxxx1) 41015(tecxxx1) 41016(tecxxx1)40550.or 4 12 40576(xxx7307) 41014(tecxxx1) 41015(tecxxx1) 41016(tecxxx1)

Job_id userJob_id user Irix Irix__jid cpuset cpusjid cpuset cpus shared? shared?
------ ---- -------- ------ ---- ------------- ---- -------- ------ ---- -------
40523 yyy2754 0x2a1900000001120b 40497.or 440523 yyy2754 0x2a1900000001120b 40497.or 4
40576 xxx7307 0x2a1900000001b712 40550.or 4 *40576 xxx7307 0x2a1900000001b712 40550.or 4 *
41013 xxx7307 0x2a19000000036cfe 41013.or 6441013 xxx7307 0x2a19000000036cfe 41013.or 64
41014 tecxxx1 0x2a19000000036d53 40550.or 4 *41014 tecxxx1 0x2a19000000036d53 40550.or 4 *
41015 tecxxx1 0x2a19000000036d54 40550.or 4 *41015 tecxxx1 0x2a19000000036d54 40550.or 4 *
41016 tecxxx1 0x2a19000000036d55 40550.or 4 *41016 tecxxx1 0x2a19000000036d55 40550.or 4 *

Assigned Nodes Map:Assigned Nodes Map:

XXXX........X........XXXXXXXXXXXXXXXXX.........................XXXX........X........XXXXXXXXXXXXXXXXX.........................

Total CPUs allocated = 88. Nodes allocated = 22.Total CPUs allocated = 88. Nodes allocated = 22.

Total CPUs free = 164. Nodes free = 41.Total CPUs free = 164. Nodes free = 41.

The “Packing” Problem

�� WhenWhen PBSPro PBSPro encounters a encounters a ““smallsmall”” job which job which
will not fit in an existingwill not fit in an existing cpuset cpuset, it creates a new, it creates a new
single-nodesingle-node cpuset cpuset

�� This can be an issue if there are a large number ofThis can be an issue if there are a large number of
jobs which do not pack neatly into single nodesjobs which do not pack neatly into single nodes

�� This issue has already arisen at our site, and hasThis issue has already arisen at our site, and has
raised concerns about reduced throughputraised concerns about reduced throughput

The “Packing” problem

Single Node Cpusets
W/6GB memory each

Single CPU jobs
Needing ~4GB memory each

One possible solution…
�� Allow sites to define a Allow sites to define a ““minimum allocation sizeminimum allocation size”” for shared for shared cpusetscpusets

Two Node Cpusets
W/12GB memory each

Single CPU jobs
Needing ~4GB memory each

User feedback

�� Our Overflow customers are Our Overflow customers are veryvery happy with our happy with our
implementationimplementation

�� A few users saw initial problems, which we believe haveA few users saw initial problems, which we believe have
all been resolvedall been resolved

�� Most users apparently didnMost users apparently didn’’t notice the change - whicht notice the change - which
was our intentionwas our intention

Cpusets - worth the trouble?
�� For us,For us, cpusets cpusets have provided a solution to a couple of vexing issues: have provided a solution to a couple of vexing issues:

�� Poor performance on large parallel jobsPoor performance on large parallel jobs

�� Badly behaved applications causing overall adverse system impactsBadly behaved applications causing overall adverse system impacts

�� Despite the Despite the ““teething painsteething pains”” we have experienced, we still believe that we have experienced, we still believe that

cpusetscpusets are the best solution we have to offer our users, and that the are the best solution we have to offer our users, and that the

PBSProPBSPro shared shared cpuset cpuset feature will make a significant difference in our feature will make a significant difference in our

ability to get the maximum efficient usage of the Origin 3800ability to get the maximum efficient usage of the Origin 3800

�� For sites that do not have a batch system which offers For sites that do not have a batch system which offers cpuset cpuset support,support,
creating special-purpose creating special-purpose cpusets cpusets is a reasonable option for certainis a reasonable option for certain
situations such as:situations such as:
�� Problematic applications (high process counts)Problematic applications (high process counts)

�� Large parallel applications that run poorly in a normal batch environmentLarge parallel applications that run poorly in a normal batch environment

�� Other special situationsOther special situations…… ??? ???

Future areas of effort

�� Better Better cpusetcpuset visibility tools visibility tools

�� Better support for Better support for cpusets cpusets under Performance Co-Pilotunder Performance Co-Pilot
(PCP)(PCP)

�� Investigation into why other sites still report variabilityInvestigation into why other sites still report variability
when using when using cpusetscpusets

�� Smooth out the rough edges of shared Smooth out the rough edges of shared cpusets cpusets andand
PBSProPBSPro 5.25.2

�� Further discussions with Further discussions with Veridian Veridian on solutions to theon solutions to the
packing problempacking problem

