
Obtaining Scalable Performance from Molecular Dynamics

Codes on HPC Machines

Peter Coveney, Fabrizio Giordanetto
Queen Mary College, London

Neil Stringfellow
University of Manchester

May 31, 2002

Abstract

A large amount of computational time allocated on high performance computers is used for
molecular dynamics simulations, and there is increasing demand for scalable codes particularly
in the field of large molecule simulations in disciplines such as biochemistry. This paper
investigates the performance of the latest generation of molecular dynamics codes on high
performance machines and discusses design strategies which have led to increased scalability.
Examples are given which demonstrate the ability of these codes to solve problems which
scale in size with the number of processors available, as well as their scalability in terms of
decreasing execution time.

1 Molecular Dynamics

Molecular Dynamics (MD) is a computational method that calculates the time dependent be-
haviour of a molecular system. The technique was developed in the 1950’s by Alder and Wain-
wright with the first protein simulations appearing in the late 1970’s. Today widespread biological
applications of MD include simulation of solvated proteins, protein-DNA complexes and lipid sys-
tems investigating detail such as the thermodynamics of ligand binding and the folding of proteins.

Molecular Dynamics simulations generate information at the microscopic level, including atomic
positions and velocities. Statistical mechanics is then used to convert this to macroscopic values
of interest such as pressure, energy or more specific information such as the energetics of a con-
formational change or the binding free energy of a particular drug (the mathematical expressions
that allow us to do this can be found in detail in many texts such as that by Allen and Tildesley
[3]). The advantage MD has over similar techniques such as Monte Carlo simulation is that MD
not only allows access the thermodynamic properties but to time-dependent phenomena too.

The molecular dynamics simulation method is based on Newton’s second law, or the equation of
motion F = ma, where F is the force exerted on the particle, m is its mass and a is its acceleration.
From a knowledge of the force on each atom, it is possible to determine the acceleration of each
atom in the system. Integration of the equations of motion then yields a trajectory that describes
the positions, velocities and accelerations of the particles as they vary with time. From this
trajectory, the average values of properties can be determined. Molecular dynamics simulations

1



can be time consuming and computationally expensive, however computers are getting faster and
cheaper and the use of massively parallel machines can greatly extend the time scale and the
molecular complexity that can be studied.

2 Molecular Dynamics Codes

Established molecular dynamics codes represent a large amount of compute time allocated on high
performance computing (HPC) machines. Current codes which are used include Amber, Gromacs
and DL POLY, but as new machines increase in speed and size the scalability of these codes on
large numbers of processors is an important factor in determining the size of problem which can be
run. Discussions of the nature of molecular dynamics codes [1] suggest that these codes may not
scale well for large numbers of particles as well as numbers of processors on cache based machines.

There are many molecular dynamics codes available for scalar and parallel systems including
Amber, DL POLY, Gromacs, LAMMPS and NAMD, but for high performance computing the
main priorities for deciding on a suitable code is the speed of execution and scalability of the
executable. For biochemical problems in a HPC environment, the issue of scalability is not only
restricted to speed-up over a large number of processors, but also the ability of a code to cope
with very large numbers of atoms in a simulation.

Codes such as Amber and DL POLY, in common with older Molecular Dynamics codes, employ
the replicated data model, which requires all atom data to be replicated on all processors. Codes
which have been written very recently, such as NAMD and LAMMPS, have parallel execution
as a major design specification, and use spatial domain decomposition techniques, so that the
amount of atom data stored on each processor scales as 1/p, where p is the number of processors.
For problems on many processors, a problem with n atoms would therefore require only n/p
sets of atom data to reside on each processor, and whilst larger amounts of memory might need
to be allocated for communication as the number of processors increases, spatial decomposition
techniques allow the possibility of carrying out simulations involving very large numbers of atoms,
where the same simulation would not fit into memory using replicated data models. Furthermore,
the lower memory requirements of spatial domain decomposition techniques can have a significant
impact in reducing execution times.

Of the codes available, NAMD [2] [5] and LAMMPS [6] claim to scale well in terms of speed-up
with increasing numbers of processors, and the ability to deal with large numbers of atoms when
a sufficiently large number of processors are available. These codes are freely available (and free)
for academic research. NAMD is developed at the University of Illinois at Urbana-Champaign and
LAMMPS development is concentrated at Sandia National Laboratories. The results presented in
this report are produced from these two codes, although many of the algorithmic considerations
will be equally applicable to any scalable molecular dynamics code.

3 Current Usage of Molecular Dynamics Codes

Although there is great scope for biological applications of Molecular Dynamics, where current
research often uses packages such as Amber and CHARMM, other readily available codes such
as DL POLY allow the molecular dynamics technique to be used in widespread applications from
chemistry to materials research.

The use of these established codes on HPC machines accounts for a large amount of total CPU
time, but the lack of scalability of these codes limits their use to a small number of CPUs per

2



job as codes using the replicated data model are not able to utilise the full power of the resources
available on large machines with hundreds or thousands of processors. Furthermore, this lack of
scalability is an impediment when it comes to examining large simulations.

4 Scalable Code Features

The algorithms employed in the newer, more scalable molecular dynamics codes incorporate a
combination of established methods and techniques, whilst where possible selecting those with the
greatest computational efficiency.

Whilst reference has been made to the packages Amber and CHARMM, these same names are used
to describe the force-fields which they employ in carrying out energy calculations. These force-
fields are well established mathematical models which describe the interactions between atoms
and include terms for electrostatics, van der Waals forces and bond interactions. LAMMPS and
NAMD allow the input files to specify either Amber or CHARMM as the force-field to be used
in calculations, thereby ensuring that users can have confidence in the methods used to perform
simulations.

The local bond interactions are carried out at each time step using Verlet integration to advance
the positions and velocities of atoms, but both NAMD and LAMMPS allow multiple timestep
integration so that non-local electrostatic interactions (and possibly non bonded interactions) are
calculated less frequently (up to 4 femtoseconds for electrostatics). In order to determine which
short range forces are to be evaluated between atoms, the input must specify a cutoff distance,
such that if two atoms are further apart than this distance then these forces are deemed to have a
negligible value and are not calculated. The choice of this distance is a great factor in determining
the amount of compuation which must be required since in a three dimensional problem such as
a molecular dynamics simulation the amount of work grows as l3, where l is the cutoff distance.
Since the electrostatic interactions in a simulation are pairwise interactions between all atoms
this part of the code is the most difficult to parallelise and is O(N2) in terms of the number of
these interactions, where N is the number of atoms. For the electrostatic forces NAMD uses the
Particle Mesh Ewald (PME) algorithm [7] which reduces the computational cost of full electrostatic
evaluations to O(N logN).

Standard molecular and atomic coordinate input is provided using Protein Data Bank (PDB) files
and X-PLOR input parameters together with a configuration file to specify the simulation to be
performed. Both NAMD and LAMMPS are able to read Amber coordinate and velocity files,
whilst NAMD is also able to read CHARMM and X-PLOR files as well as Gromacs files. This
compatability could prove significant in persuading users to migrate to these scalable codes.

One very useful feature of NAMD for parallel simulations is the implementation of dynamic load
balancing. The frequency with which load balancing is applied can be controlled by the user, but
by default the simulation begins with an initial attempt at load balancing, then after 100 time
steps the first dynamic load balancing is performed and then after every 4000 time steps. For
simulations with large numbers of atoms, regular use of this feature can produce good parallel
speed-up by ensuring a fairer distribution of work between processors.

5 Scalability of Amber

The following benchmark involved running a simulation which had been written as input to Amber
and performing a translation of this simulation into NAMD format. The coordinate and trajectory

3



files were used as provided for Amber since NAMD is able to read these files, and the input
parameters were then translated from Amber to NAMD. Results are shown in table 1.

Processors NAMD Timing
1 30159
2 16096
4 8997
8 n/a

16 2637
32 1571
64 1209

128 1230
256 1199
512 1319

Table 1: Timings (seconds) for NAMD using Amber input for 27,109 atom simulation

Since the NAMD input was intended to mimic Amber as closely as possible, several features of
NAMD which may decrease execution time were not used. For example, the simulation used full
electrostatic evaluations at each step whereas NAMD allows the user to perform this part of the
simulation less frequently (for example once every 4 femtoseconds). Modification of the NAMD
input parameters to carry out PME every 4 femtoseconds showed a 20% to 30% reduction in
execution times whilst maintaining the stability of the algorithm.

1

10

100

1000

1 10 100 1000

S
pe

ed
up

�

Number of processors

NAMD scaling
Amber scaling

Linear speedup

Figure 1: Scaling of NAMD and Amber

The timings in table 1 agree well with those contained on the NAMD web site [5] which demonstrate
scaling as shown in figure 1. However, good scaling could be achieved by having a slower code, but
figure 2 shows that for simulations involving more than 16 processors NAMD is able to outperform

4



Amber in terms of the time per step of the simulation.

0.01

0.1

1

10

1 10 100 1000

T
im

e 
pe

r 
st

ep

Number of processors

NAMD time per step
Amber time per step

Figure 2: Time per step for NAMD and Amber

6 Benchmarks

Benchmarking was carried out on an SGI Origin 3800 with up to 512 MIPS 400 MHz R12000
processors available for parallel execution.

There were a variety benchmarks used to test the scalability of LAMMPS and NAMD, ranging from
around 6000 to over 300,000 atoms. These benchmarks carried out 500 femtosecond simulations
and therefore the serial I/O bound start-up time was a relatively large part of the benchmark
time, particularly when using larger numbers of processors. Hence, speed-up using the time taken
per step was decided to be the best guide to the scalability of the code for these problems.

The first set of simulations involved five problems ranging from 6028 atoms to 55909 atoms with
a cutoff distance of 9 Angstroms using the LAMMPS package. The scaling is shown in figure 3.

These figures demonstrate that for real problems similar to the largest number of atoms which
Amber can handle, the LAMMPS package demonstrates good scaling up to 128 processors. For
the largest problem of 55909 atoms, the timings demonstrate some superlinear scaling up to 64
processors.

The same simulations (except for the 55909 atom example) were then carried out using the NAMD
package, and the speedups are shown in figure 4. Whilst the speedups are not as good as those
shown in figure 3 for LAMMPS, the actual timings are slightly faster.

The four simulations which were carried out in these examples were using the same time step
for all force evaluations, however as has been pointed out, different forces can be carried out at

5



0

50

100

150

200

250

300

0 50 100 150 200 250 300

S
pe

ed
up

�

Number of processors

6028 atoms
9408 atoms

12032 atoms
22465 atoms
55909 atoms

Linear speedup

Figure 3: Scaling of LAMMPS for a variety of simulations

different intervals. Re-running the simulations but evaluating non-bond forces every 2 steps and
full electrostatics every 4 steps produces the speedups shown in figure 5 which appears worse than
with force evaluations at every step. However figure 6 shows the actual time per step for the full
and multi-time stepping approaches for the 22465 atom simulation, and here the multiple time
stepping approach is clearly beneficial.

These problems, whilst demonstrating the ability of NAMD and LAMMPS to compete with Am-
ber, are too small to show the real scalability of these codes. For the true potential of these
packages we need to analise larger problems.

The first of the larger simulations involves 92,224 atoms with PME evaluated every 4 femtoseconds.
The results are shown in figure 7.

The results show scalability up to 500 processors on this system, with a speedup of 195 on 256
processors and a speedup of 332 on 500 processors. These speedups correspond well to the figures
shown on the NAMD benchmarks web site [4].

An even larger simulation is of a large scale problem involving 327,506 atoms, again with PME
evaluated every 4 femtoseconds. This simulation does around three quarters of the work per atom
for the local electrostatics and van der Waals interactions compared to the previous benchmark,
with a cutoff distance of 11 Angstroms compared to 12 (this corresponds to a volume ratio of the
spheres of influence of approximately 0.77:1). The results are shown in figure 8.

Again, the figure shows, that for a larger problem, good speed-up (time per step) is attained for
up to 384 processors (the maximum used).

The large time per step in this simulation provides for a good computation to communication
ratio, and this problem should continue to scale well for a larger number of processors.

6



0

50

100

150

200

250

300

0 50 100 150 200 250 300

S
pe

ed
up

�

Number of processors

6028 atoms
9408 atoms

12032 atoms
22465 atoms

Linear speedup

Figure 4: Scaling of NAMD for a variety of simulations

In terms of scalability of problem size, it should be noted that the NAMD code also scales approx-
imately linearly with the number of atoms for a given number of processors (taking into account
different PME constraints and the fact that the fourth simulation does less work per atom), and
for larger problems, where PME evaluations are less frequent, we can expect good scaling in terms
of both speed-up and the ability to cope with large problems.

In terms of the amount of time required to carry out these large calculations, a run of the 92,224
atom problem was able to carry out 710 picoseconds (0.71 of a nanosecond) of simulation using
256 processors in 24 hours, therefore a 1 nanosecond simulation should be possible in about a day
and a half, bringing realistic large scale simulations within the grasp of researchers. Furthermore,
at the end of this 24 hour period a good degree of convergence had been achieved.

7 Alternative Molecular Dynamics Codes

As already mentioned, there are a variety of codes/packages available for the solution of problems
in molecular dynamics. NAMD and LAMMPS were selected for this evaluation, not just because
they demonstrates good scaling, but also because input for the widely available Amber package
can readily be used with an appropriate configuration file. However other codes are expected to
appear including a new version of DL POLY which incorporates a distributed data model, and
should therefore offer good scaling to a large existing user base.

7



0

50

100

150

200

250

300

0 50 100 150 200 250 300

S
pe

ed
up

�

Number of processors

6028 atoms
9408 atoms

12032 atoms
22465 atoms

Linear speedup

Figure 5: Scaling of NAMD using multiple time stepping for a variety of simulations

8 Conclusions

Scalable codes are now available for carrying out large molecular dynamics simulations on high
performance computers and these codes scale well not only in terms of good speed-up, but also in
their ability to handle large problems.

9 Acknowledgements

We would like to thank Jim Phillips at the University of Illinois for providing the input files to
carry out the 90,000 and 300,000 atom benchmarks.

References

[1] Scuola Internazionale Superiore di Studi Avanzati. Mdbnch: A molecular dynamics benchmark.
http://www.fisica.uniud.it/ ercolessi/mdbnch.html, cited May 2002.

[2] Laxmikant Kal, Robert Skeel, Milind Bhandarkar, Robert Brunner, Attila Gursoy, Neal
Krawetz, James Phillips, Aritomo Shinozaki, Krishnan Varadarajan, and Klaus Schulten.
Namd2: Greater scalability for parallel molecular dynamics. Journal of Computational Physics,
151:283–312, 1999.

[3] M.P.Allen, D.J.Tildesley. Computer Simulation of Liquids. Oxford University Press, 1987.

[4] Theoretical Biophysics Group of the University of Illinois. NAMD performance.
http://www.ks.uiuc.edu/Research/namd/performance.html, cited May 2002.

8

http://www.fisica.uniud.it/%7eercolessi/mdbnch.html
http://www.ks.uiuc.edu/Research/namd/performance.html


0.01

0.1

1

10

1 10 100 1000

T
im

e 
pe

r 
st

ep

Number of processors

Full time stepping
Multi time stepping

Figure 6: Time per step for 22465 atom simulation using full and multiple time stepping

[5] Theoretical Biophysics Group of the University of Illinois. NAMD web pages.
http://www.ks.uiuc.edu/Research/namd/, cited May 2002.

[6] Sandia National Laboratories Steve Plimpton. LAMMPS web pages.
http://www.cs.sandia.gov/ sjplimp/lammps.html, cited May 2002.

[7] T.A.Darden, D.M.York, L.G.Pedersen. Particle mesh ewald: An N logN method for ewald
sums in large systems. Journal of Chemical Physics, 98:10098–10092, 1993.

9

http://www.ks.uiuc.edu/Research/namd/performance.html
http://www.cs.sandia.gov/%7esjplimp/lammps.html


0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450 500

S
pe

ed
up

�

Number of processors

92,224 atoms
Linear speedup

Figure 7: Scaling of NAMD for 92,224 atom simulation

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

S
pe

ed
up

�

Number of processors

327,506 atoms
Linear speedup

Figure 8: Scaling of NAMD for 327,506 atom simulation

10


	Molecular Dynamics
	Molecular Dynamics Codes
	Current Usage of Molecular Dynamics Codes
	Scalable Code Features
	Scalability of Amber
	Benchmarks
	Alternative Molecular Dynamics Codes
	Conclusions
	Acknowledgements

