
High-Performance Linear Algebra

Adrian Tate (CSAR)

Patrick Briddon (University of Newcastle)

Content

AIMPRO
�About

�Performance

Optimisation
�Techniques

�Transpose

�Sum

�Broadcast

�Synchronization sharing

AIMPRO

AIMPRO - Code for first principles electronic
structure

Standard problem in computational physics:
� matrix eigenvalue problem
� A x = _ x

Arises when solving a PDE eigenvalue problem
via basis set expansion.

Occurs in applications in many areas of science
or engineering

Eigenvalue Problem

Standard approach when matrix dense
and a substantial proportion (e.g. 10%)
of eigenvectors needed
�Reduce matrix to tridiagonal form. The

eigenvalues/eigenvectors of this are then
more easily found. This is done in (e.g.)
LAPACK. We will look at efficiency of tri-
diagonalisation using householder method.

Eigenvalue Problem

Old implementations (e.g. eispack) use level
one BLAS (ddot/daxpy).

Newer implementations (LAPACK) try to use
level 3 as much as possible

Structure of lapack code is:

LAPACK code

do i=n-1,1,-1
... setup elementary reflector x(1:i), O(i)
work

 y(1:i) = dsymv (a(1:i,1:i), x(1:i)) // symmetric
matrix vector multiply

 ... O(i) work generating vectors u(:) and v(:) ..
 call dsyr2(u(1:i), v(1:i), a(1:i, 1:i)) // a_ij =

a _ij +u_i*v_j

enddo

LAPACK

Both dsymv and dsyr2 do equal work, (2N3)/3
giving (4N3)/3 total op count

But ... both dsymv and dsyr2 mem bandwidth
limited. LAPACK chooses strategy of blocking.
Result is that dsyr2 replaced with level 3
routine dsyr2k. However, the dsymv's remain.

Resulting performance = 2N3 /3 FLOP at level 2
BLAS speed + 2N3 /3 FLOP at level 3 BLAS
speed.

Parallel

How well does this go in parallel - Scalapack
routine is pdsytrd. This uses exactly same
strategy - build on parallel versions of
dsymv and dsyr2k (these are called pdsymv
and pdsyr2k)

But two Problems:

�� pdsymv performance poor (poor serial +
poor parallel scaling)

Parallel

2. Work done in preparing matrix as input for
pdsyr2k is not shared by all processors,
leading to load imbalance. Some pdsytrd
scaling is poor - notice big drop off on 1000
matrix even on 16 nodes.

Often we may want to repeatedly diagonalise
matrices of 2000 or so on larger numbers of
processors. ScaLAPACK is not very good at
this.

Optimisation

Alternative approach followed here

�write code based on level 2 routine, but
remove dsyr2 from end of previous
iteration and fuse with dsymv.

�Exposes more flops per element of matrix
a(i,j) loaded.

BLAS fusing

 do i=n-1,1,-1

 if(i==n-1)then
 y(1:i) = dsymv (a(1:i,1:i), x(1:i))
 else
 call dsyr2(u(1:i), v(1:i), a(1:i, 1:i))
 y(1:i) = dsymv (a(1:i,1:i), x(1:i))
 endif
 do dsyr2 BUT ONLY FOR COLUMN "i" of a (remainder done

in next iteration).

 enddo
 call dsyr2 (just for the last iteration)

Parallel Code

New thing : we need a handwritten blas routine
that fuses dsymv and dsyr2. Not hard to get it
to go well - just unrolling gets reasonable
speed.

Result .. serial performance roughly same as
previous LAPACK routine without need for
level 3 routines ... therefore parallelism
begins from same starting performance.

Parallel Code

The parallel version of our handwritten BLAS is
even easier than serial - the ScaLAPACK
block scattered distribution means that apart
from a very small number of diagonal blocks
we deal with rectangular matrices.

Parallel Code

This is already 50% better than ScaLAPACK
and scales better

From this point we can profile the code to
optimise for parallel

This exposes the main parallel inefficiency - the
transposing of row distributed u/v/x/y into
column equivalents or vice versa.

Exposing Parallel Inefficiency

 1 0.000129 10 0.000359

 2 0.004264 11 0.104754

 3 0.019923 12 0.001907

 4 0.407934 13 0.20846113 0.208461

 5 0.001052 14 0.605466

 6 0.001217 15 0.001203

 7 0.708108 16 0.24008416 0.240084

 8 0.002171 17 0.73658317 0.736583

 9 0.008711 18 0.000085

Parallel Code

Earlier performance derived from improved
cache utilisation, but further optimisation will
involve outright beating of library routine
PBDTRNV, can this be done?

This is a communication intensive routine

There are a number of ways forward:

Optimising PBDTRNV

Switch to 1-sided communications

Tune to requirements of program

Remove barriers

Exploit grid shape and requirements of program

(Always) look out for cache reuse possibilities

PBDTRNV

ScaLAPACK routine PBDTRNV takes a
global block-cyclically distributed vector
and creates its transpose, i.e.

PBDTRNV

PBDTRNV

PBDTRNV

Seemingly simple operation

�Extremely complex program

�Affects Scaling badly

PBDTRNV performance

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

4 8 16 32 64 128

Number of PE's

T
im

e
(s

ec
s)

SHTRAN

Data transfer via shmem_ptr
DOUBLE PRECISION :: X_local,X_remote

POINTER(ptr,X_local)

Ptr = shmem_ptr(X_remote,target)

X_local then represents remote object
X_remote

Performance better than shmem_get/put

Synchronization

To maximise the performance gains of 1-sided,
synchronisation must be kept to a minimum

In particular, barriers are out of the question

Hence, synchronization must always be
carefully orchestrated
�Point of transfer

� ‘Trailing’ processors

Synchronization

Shmem_ptr is used to access a remote ‘safety’ integer

After data transfer the local host updates integer

Remote processes ‘spin’ on the value of integer

0 1

spinningupdates

Synchronization sharing

There are three calls to PBDTRNV for vectors U,V and
X. This results in a three-fold synchronization
overhead. Instead, simply perform second and third
transposes within the first routine, since the
synchronization would be the same.

X

U
V

Exploit Grid shape

AIMPRO uses as close to a square BLACS grid
as possible. This can be exploited.

Block Cyclic distribution of vectors has a useful
side-effect for square grids.

� If a global vector X is block –cyclically distributed onto a
column of a 3x3 grid, then each process in column would
have a section X1, X2 , X3. For square grids, redistribution
of the vector after transposing results in identical
distribution along the row, i.e. simulates a vector linear
inverse

Square Grids

X1

X2

X3

Square Grids

X1

X2

X3

Square Grids

Square Grids

Y1 Y2 Y3

Exploit grid size.

For n x 2n grids can be optimised similarly.
Here the local vector must be distributed only
amongst 2 process elements

In fact, whenever the grid has dimensions that
are divisible, this can be exploited

SHTRAN transfers the whole vector to target
processor who then extracts relevant
sections according to the blocking factor

Utilise the Functionality

The transpositions in AIMPRO involve a
row process transpose on every row
simultaneously, or vise-versa

Resultant transposition is a series of np
point-to-point data transfers, without the
need for global communications or
barriers

HPTRAN

HPTRAN

synchronization

HPTRAN

Performance

Performance is best for square grids

n x 2n and n x 3n grids still outperform
PBDTRNV

Important feature is that execution time
stays reasonably constant with number
of processors

Performance

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

4 8 16 32 64 128 256

Number of Processors

time (secs)
PBDTRNV
HPTRAN

Outcome

By removing this major impediment the code
scales much better, and performs well

But, similarly poor performance was obtained in
the following areas of the code
�A column/ row summation of vectors

�A later solitary transposition

�A broadcast of a vector along rows

The same methods could be employed here. (?)

Problem

Code requires two summations
� 1 over a process row

�1 over a process column

Followed by
�Transposition of row vector

�Broadcast along process row

i.e…

Vector yc summed over process row

yc2yc1yc0

Vector yc summed over process row

yc2yc1yc0

giving..

yc0 yc1 yc2

giving..

Yc

Similarly, yr is summed over process
column

yr2

yr1

yr0

Similarly, yr is summed over process
column

yr0

yr1

yr2

giving..

yr1

yr0

yr2

giving..

Yr

Now have Yc and Yr

Yr

Yc

..transpose Yr

Yc

Yr

..transpose Yr

Yc YrT

..add together

YrTYc

giving…

Xc

 Then, broadcast over entire row

Xc

Broadcast over entire row

Xc

Broadcast over entire row

Xc Xc Xc

Optimisation

Broadcast and summation code
developed using shmem etc

But, the operations here cannot be fused
together, since the syncronization would
be far too aggressive – code would
undoubtedly be slower

..Unless the mathematics is re-ordered

yr and yc

yr0

yr1

yr2

yc0 yc1 yc2

First transpose yr using HPTRAN

yr0

yr1

yr2

yc0 yc1 yc2

giving..

yr0

yr1

yr2

yc0 yc1 yc2

giving..

yc0 yc1 yc2 yr0
T yr1

T yr2
T

Then sum in unison using HPSUM

yc0 yc1 yc2 yr0
T yr1

T yr2
T

Then sum in unison using HPSUM

yc0 yc1 yc2 yr0
T yr1

T yr2
T

Also within HPSUM, simply add together

Yc YrT

Also within HPSUM, simply add together

Yc YrT

giving..

Yc YrT

giving..

Xc

Which can then be broadcast over row process

Xc

Which can then be broadcast over row process

Xc

Giving same resultant replicated vector

Xc Xc Xc

HPBSUM

In fact, synchronicity can be shared for
summation, local sum and broadcast (partly)
to give the same functionality with only 1
synchronization overhead.

Resultant HPBSUM gives vast performance
improvement over previous BLACS routines

Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

4 8 16 32 64 128 256

Numer of PEs

T
im

e
 (

s
e

c
s

)

HBSUM

Scalapack/BLACS

Scaling of the whole code

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128 256

ScaLAPACK

Replacement

 Optimised
Replacement

Conclusion

Code fusion can improve performance due to
�Better cache reuse

�Reduction in synchronisation

Sca/LAPACK design philosophy - always best
for HPC?

At least in this case, ScaLAPACK can be
beaten

Further Work

Many ScaLAPACK routines perform badly

CSAR users report ScaLAPACK dependence
inhibits production of capability work

Two avenues for future work
�Specific replacement of routines for CSAR users

�Create library of HPC linear algebra routines for
Origins

