
Resource Management on a Mixed Processor Linux Cluster

Haibo Wang

Mississippi Center for Supercomputing Research

Many existing clusters were built as a small test-bed for small group of users and then
upgraded to a large one. The process of building such test-bed is also the process of
learning. After finding the applications or user group that is beneficial from such
technology, it is time to upgrade the cluster from a test-bed to the production system.

There are two options to upgrade a cluster: adding the same hardware (previous hardware
configuration) to existing cluster or adding the current available hardware (node) to the
existing cluster. Most likely, the second option is more favorable due to two reasons: the
vendor might have a very attractive price on the current hardware and might discontinue
the old model; the current hardware will make the cluster more attractive to the users. So
a mixed processor cluster is a better choice. The resource management on such
heterogeneous cluster will be more complicated than the homogeneous cluster.

MCSR Mixed Processor Cluster

Our cluster started with 16 Pentium III processors as a test-bed which we trained
ourselves and our users for the new computing platform. After the positive feedback from
our users, we added 40 Pentium IV processors to the cluster and used 3 Pentium IV
processors as dedicated I/O nodes. The applications running on MCSR cluster include:
MPICH, Linda, NWCHEM1,2, Gaussian, GAMESS and MPQC. There are about 50
research accounts and a dozen class accounts.

I/O management

Many scientific computing applications are I/O intensive and often need to access large
amounts of data stored in files. Some of them need the large scratch disk space such as
GAMESS, NWHCEM and Gaussian. Some of them need check pointing for later restart
or data analysis such as Gaussian. It is generally known that I/O is much slower than
computation. The slow I/O speed is the bottleneck of overall performance. Improving the
I/O performance can reduce the overall computational time. The balance among I/O
performance, communication performance and CPU performance will also improve the
overall performance. It can improve the I/O performance if the I/O operation always
access large amounts of data instead of small amounts of data. To improve the I/O of the
cluster, we can choose sufficient amount of high-speed I/O hardware and appropriate file
system software.

Most of current disk is 10,000 RPM and it takes 6 milliseconds for the disk to complete
one revolution. SCSI disk is faster than IDE but cost more. Many ready-to-sell PCs are
installed with IDE disks and SCSI disks usually come with server system. The file system

cache with size of 512k is the common configuration in Pentium III/IV machine. Cache
can reduce the number of I/O operation and improve the performance.

For a small group or lab cluster, how to choose I/O configuration is dependent on the
application running on the cluster. Usually, there are few applications running on the
small cluster. It is not cost efficient to have a dedicated I/O node. Many small clusters
choose system and I/O combined node to handle I/O request. Each compute node also has
a local disk of its own and is used to store scratch files local to each process.

In contrast, it is very important to a large cluster on how to choose I/O configuration in
the multiple users environment. We used the following approaches to improve I/O
performance.

1: category the user according to two types: researcher who needs the resource to run the
job and general user who want to learn the technology. Researcher will get the faster
processors and more resources. General user will be assigned to the slower processors
and limited resources.

With PBS Pro, we can group the nodes into different queues. Group the slower nodes to a
queue that is assigned to the general user such as class accounts. Since PBS assigns the
job to the free node according to a nodes file, it is suitable to put the best hardware on the
top of lists. The best processor will always be busy if not all the nodes are busy. Research
account can access to the faster processor at first. The security and Access control
features in PBS Pro can permit the system administrator to allow or deny access on a per-
system, per-group, and/or per-user basis.

2: category the job types certain user might run. Some users prefer computing intensive
jobs and some prefer I/O intensive jobs. We split the users who are in the same group and
run the similar jobs into different I/O nodes. It will help to distribute the load.

3: configure the I/O nodes to handle more workload. We use RAID3 (Redundant Array of
Inexpensive Disks) to combine multiple inexpensive disks into a large, high performance
logical disk called work on the I/O node. We assign 10 research accounts and 6 to 8
general accounts to each I/O node. Then we create a virtual directory called ptmp to
combine all I/O nodes. Using RAID, we can stripe data across the multiple disks on each
I/O node and get high I/O rate by accessing data in parallel.

4: take advantage of the I/O implementation of the applications. For example, user can
use MPI-IO implementation to optimize their programs. We have developed online
document to educate our users and helped our user to adopt these tools. Another
application NWCHEM uses Global Arrays (GA) to support message passing and shared
memory by allow task-parallel access to distributed matrices.

As mentioned above, the cache of file systems can help to reduce the number of small
I/O requests. But still, for each I/O request, there are system calls even though the system
reads large data with the help of file system cache. The cost of these system calls is very
high. For the mixed processor cluster, it is very important to make large request.

The ratio of dedicated I/O and computing nodes is related the user/job. On our cluster the
ratio is 1 to 17 and it is almost the same ratio of user per I/O node. Since the number of
users who prefer I/O intensive job is increasing, we will increase the number of I/O node.

Job Scheduling

Due to the drawbacks of a RAID system such as high disk failure rate and lower
throughput of small writes, it requires a complicated job scheduling system. There are
several jobs scheduling software available to the cluster system. We installed OpenPBS
on the 16 nodes cluster. It works well on the small uniform processor system. When the
16 nodes cluster was upgraded to 54 nodes, OpenPBS cannot provide the complicated job
scheduling and user grouping functionality we need. These functionalities can be
provided from PBS Pro. PBS Pro provides the capabilities of grouping nodes/users or
associate nodes with queue, assigning priority score to user/group at queue or system
level, deleting jobs running on dead nodes and preemptive job scheduling.

Using PBS Pro, we can limit the number of queued jobs per user and the number of
running jobs/processes per user. It is very important to keep the balance among the I/O
node. If we allow user run a large number of jobs, there will be so many I/O processes on
certain I/O node and crash the node since the user is bound to the node.

Besides using PBS Pro, we developed some scripts to simplify the task of job submission
and keep the nodes in good shape. For example, if a user request more memory than the
physical memory available, there will cause a lot of page swapping. Some of the nodes
will be very slow to respond to PBS. The performance of the whole system will be
decreased.

PVFS4 is a parallel file system and stripes files across the local disks of nodes in the
cluster. It is virtually a single image file system. To use PVFS, we need a more balanced
system. It might require all nodes running the same application and with the same
resource. In the multi-application multi-user cluster environment, there are some
limitations on this approach and we are still testing it. In the small cluster with single
application, it is a good choice and is proved to be very efficient.

Kernel Parameter Tuning

We found that increase the value of SHMMAX would help some computing intensive job
such as MPI and NWCHEM. SHMMAX Is the maximum size of a shared memory
segment. The range of values is between 131072 and 2147483647 bytes; the default value
is 524288 bytes. By convention, the maximum value of 2147483647 bytes is interpreted

as 3221225472 bytes (3GB). The default SHMMAX value is 64MB on Redhat 7.1 Linux
system. 1 GB is the largest value of each shared memory segment size in bytes. The
default value 64MB is enough to small jobs but cause many large NWCHEM jobs
crashed. Since RedHat 7.1 needs 100MB memory to run most its processes and there are
several applications such as PBS and job accounting needs around 100MB, we decided to
change the value of SHMMAX from 64MB to 256MB. This change solved the problem
of large jobs on the mixed processor cluster.

Performance comparison using mixed processors and unique processors
Since the network bandwidth plays a major role in the performance, the difference of
performance between a mixed processor job and a unique processor job is not very
significant when the number of the processors is increasing. We have run some testing
jobs with NWCHEM. The results show that the wall-time of a unique processor job is
about 20% less than the mixed processor job when the number of processors is less than
4. It reduced to less than 10% when the number of the processors is increased to 16.

Conclusion

In many cases, the simple test-bed cluster will be upgraded to a mixed processor cluster.
Most of money is spent on the goal to achieve high computation and communication
performance. The configuration of I/O hardware for the machine is insufficient. The
faster processors and high-speed communication tend to be more important to many
people when they make decision on how to configure the new cluster. It is hard to say
how much I/O hardware or how many dedicated I/O nodes are sufficient. In many cases,
the application’s requirements play an important role on I/O hardware configuration.
Sometimes, the system architecture and quality of the I/O hardware might also play role.

The fast file systems can help to improve the mixed processor cluster’s performance.
There are several fast file systems that are still investigated for the cluster. In many cases,
the home directory and application directory are NFS mounted, and can be easily
accessed from other machine due to the convenience feature of NFS. But NFS is
extremely slow. The read/write data operation of a parallel application on the NFS
directory will be bottleneck for the application.

Some applications such as MPI and Linda can have multiple processes access a common
file. Our experience has been that, performing I/O from multiple processes on the mixed
processor cluster can achieve higher performance.

References:
1. D. E. Bernholdt, E. Apra, H. A. Fruchtl, M.F. Guest, R. J. Harrison, R. A. Kendall,
R. A. Kutteh, X. Long, J. B. Nicholas, J. A. Nichols, H. L. Taylor, A. T. Wong, G. I.
Fann, R. J. Littlefield and J. Nieplocha, "Parallel Computational Chemistry Made Easier:
The Development of NWChem", Int. J. Quantum Chem. Symposium 29, 475-483
(1995).

2. R. J. Harrison, J. A. Nichols, T. P. Straatsma, M. Dupuis, E. J. Bylaska, G. I. Fann,
T. L. Windus, E. Apra, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H.
Dachsel, B. de Jong, M. Deegan, K. Dyall, D. Elwood, H. Fruchtl, E. Glendenning, M.
Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kendall, R. Kobayashi, R, Kutteh, Z.
lin, R. Littlefield, X. Long, B. Meng, J. Nieplocha, S. Niu, M. Rosing, G. Sandrone, M.
Stave, H. Taylor, G. Thomas, J. van Lenthe, K. Wolinski, A. Wong, and Z. Zhang,
“NWChem, A Computational Chemistry Package for Parallel Computers, Version 4.0.1"
(2001), Pacific Northwest National Laboratory, Richland, Washington 99352-0999,
USA.

3. Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A.
Patterson, “RAID: high-performance, reliable secondary storage”, ACM Computing
Surverys, 26(2):145-185, June 1994.

4. http://www.parl.clemson.edu/pvfs

