
UNICORE – Globus:
Interoperability of Grid Infrastructures

Michael Rambadt Philipp Wieder

Central Institute for Applied Mathematics (ZAM)
Research Centre Juelich

D–52425 Juelich, Germany

Phone: +49 2461 612057
E-mail: [m.rambadt|ph.wieder]@fz-juelich.de

ABSTRACT:

This paper describes software developed at the Research Centre Juelich to demonstrate the feasibility of Grid
interoperability between UNICORE (Uniform Interface to Computer Resources) [1] and Globus [2] without changes to
any of the systems. UNICORE user requests, like job submission, status query, and output retrieval had to be mapped

to the corresponding Globus mechanisms. Another significant topic was the integration of the Globus security
infrastructure into the UNICORE architecture. The functionality of this prototype has been demonstrated successfully

on SC2001 in Denver.

KEYWORDS:

Globus, Grid, UNICORE, Interoperability

1 Motivation

There has been a substantial progress in developing Grid
technologies in the recent years [3]. At universities and
research centers world-wide scientists work on the evolu-
tion of Grid computing. Even if the way differs in many
cases one of the principal goals of all those projects is the
same: to give users access to distributed resources. Differ-
ent projects focus on different aspects and it is only natural
to combine them.
Both Globus and UNICORE provide a Grid infrastructure
which gives users access to distributed resources. Globus
can be characterized as a toolkit that allows the devel-
opment of Grid applications using the rich set of Globus
services. UNICORE represents a vertically integrated so-
lution focusing on uniform access to distributed comput-
ing resources. UNICORE is developed by a consortium of

German universities, research laboratories, and software
companies. It is funded in part by the German Ministry
for Education and Research (BMBF).
The work presented here has been carried out in coopera-
tion between Argonne National Laboratory and Research
Centre Juelich. UNICORE acts as a client to access se-
lected Globus resources, allowing job submission, status
queries, data staging, and output retrieval. In addition,
the objective was to achieve the goal without changes to
Globus and UNICORE.

2 UNICORE & Globus architectural
concepts

We restrict the description of the two architectures to the
core concepts related to our work. Especially components

1



needed to manage multi-site jobs – like co-allocation used
by Globus or job dependencies and data staging in UNI-
CORE – are not covered. For a detailed description of the
infrastructures of UNICORE and Globus see [4] and [5]
respectively.

2.1 UNICORE

UNICORE implements a three tier architecture consisting
of user, server and target system tier.
As shown in Figure 1 the user tier consists of the UNI-
CORE client, a graphical user interface which enables users
to prepare and manage UNICORE jobs. The client is a
Java application that executes on the user’s personal work-
station. A UNICORE job is created using the Job Prepara-
tion Agent (JPA), where the user specifies the actions to be
performed, the resources needed and the system on which

the job is to run. From this job description the UNICORE
client generates an Abstract Job Object (AJO), which in-
stantiates the class representing UNICORE’s abstract job
model. The AJO is signed with the user’s certificate and
sent to the Gateway, one of the two components of the
server tier.

The Gateway authenticates the user and transfers the AJO
to the Network Job Supervisor (NJS). The NJS translates
the abstract job represented by the AJO into a target
system specific batch job using the Incarnation Database
(IDB). The Gateway and NJS execute typically on dedi-
cated secure systems behind a firewall.

UNICORE’s communication endpoint is the Target System
Interface (TSI), which is a daemon executing on the tar-
get system. It’s role is to interface with the local operating
system and the local batch subsystem.

User tier

UNICORE client

Job Preparation Agent
X.509

User Certificate

Abstract Job Object (AJO) Authentication

Server tier

Gateway

User
Validation

Network Job Supervisor (NJS)

Incarnation DB

Batch job, data

Target system tier

Target system

Target System Interface (TSI)

Batch subsystem

AJO

Fig. 1: UNICORE architecture

2.2 Globus

Figure 2 shows the components of the Globus architecture
relevant to our work, namely security components, job sub-
mission, status information and data transfer. Especially

the information services and the multi-site job mechanisms
available in the Globus Toolkit (see [5]) are not relevant to
the work presented here.

The Globus Security Infrastructure (GSI) [5] is based on

2



the Grid Security Architecture introduced in [6]. The GSI
is used to manage mutual authentication between the local
and the remote machine, and authorization on the remote
system. The core part of the security environment from the
user’s point of view is a temporary User Proxy Certificate,
which is generated using the user’s X.509 certificate and
Globus’ grid-proxy-init service. This temporary certifi-
cate is used by all Globus computations where it acts on
behalf of the user.
The Globus Resource Allocation Management (GRAM) [7]
Client submits a GRAM job request to a remote machine,
which includes the use of the User Proxy Certificate. The
remote entity performing the mutual authentication is the
GRAM Gatekeeper, which also maps the user represented
by the temporary certificate to a user name known locally
on the remote system. The interface to the batch subsys-
tem is the GRAM Job Manager. It is executed using the

user’s local identity on the remote machine and performs
tasks like submission of subsystem specific job requests,
status monitoring and job control.
The GRAM Client retrieves job status information from
the Job Manager via a callback mechanism. The job states
defined in the GRAM context are: pending, active, done
and failed.
To transfer and access data Globus has implemented the
Global Access to Secondary Storage (GASS) which is de-
scribed in [8]. On the client side a GASS Server is started
the URL of which is given to the Gatekeeper within the
GRAM job request. All file transfer actions directed to the
local machine refer to this GASS Server URL. E.g. stan-
dard output and error files related to a job computed on
a remote machine are transferred from the batch subsys-
tem via the GASS Client (which is attached to the Job
Manager) to the GASS Server.

Local machine

Remote machine

Client application using Globus APIs

GRAM Client GASS Server

X.509 User

Certificate

Certificate

User Proxy

grid-proxy-init

Callback DataGRAM job request

GRAM Gatekeeper GRAM Job Manager

GASS Client

Batch subsystem

Creation

Job request

Fig. 2: Globus architecture

3 The UNICORE – Globus
interoperation framework

To bridge UNICORE and Globus solutions to the following
key aspects had to be developed:

• Translating UNICORE requests for job submission,
output retrieval, and status queries to the corre-
sponding Globus constructs.

• Mapping of permanent UNICORE user certificates
to temporary Globus proxy certificates.

These functions were to be implemented without changes
to the respective architectures. This was a management re-
quirement to prevent interference with ongoing work and
delivery schedules of the UNICORE and Globus develop-
ment.
The conclusive design solution chosen to meet the require-
ments identified above was to enhance the Target System
Interface. The resulting Enhanced Target System Interface
(ETSI) is handled by UNICORE as one of many target
systems. To Globus the ETSI acts as a client application
using standard Globus APIs. The overall structure of the
Enhanced Target System Interface is depicted in Figure 3
and described in the following sections.

3



Target System Interface

CA

Job Request

Interface

Interface
Globus

User Proxy

Certificate

Proxy-CA

Request

Creation

Enhanced Target System Interface

U
N

IC
O

R
E

G
lo

b
u
s

GRAM job request

Callback
Data

Data

Batch job

Fig. 3: Enhanced Target System Interface

3.1 Design of the UNICORE - Globus job
submission

The basics of the UNICORE - Globus job submission are
as follows:
A user creates a UNICORE job for the target system
“Globus” using the UNICORE client. The UNICORE job
is submitted to the NJS which sends a submit request to
the TSI on the server running the Enhanced Target System
Interface.
Instead of communicating directly with a local batch sys-
tem, the Job Request Interface (JRI) translates the UNI-
CORE job request parameters into the GRAM Resource
Specification Language (RSL) [9] which provides a com-
mon interchange language to describe resources. The new
Globus job description is submitted to a Globus Gate-
keeper which manages the delegation of the job to a Globus
target system. The job is executed there and the results
of the job are sent back to the JRI which transmits them
back to UNICORE again. The user can work with the
results in the UNICORE graphical interface.

3.2 UNICORE - Globus certification
mapping

A very important topic of UNICORE and Globus is to
guarantee secure access to remote resources. The security
models of both UNICORE and Globus base on public key

technology using X.509 certificates. But the authentica-
tion mechanisms of both systems differ in detail.

UNICORE signs each part of the job with the user‘s cer-
tificate. This guarantees the integrity of jobs and authen-
ticates the submitting entity of a job. Globus uses proxy
certificates and delegation. A user proxy certificate is a
temporary credential which allows processes being created
on behalf of the user to acquire resources, etc., without
additional user intervention [6].

A mechanism had to be developed which issues a Globus
certificate for a UNICORE user. One possibility to achieve
this was to use a Globus tool called MyProxy [10]. The
MyProxy package provides a secure method for portal
users to access resources using a limited proxy working
within the Globus Security Infrastructure. As part of the
package, a MyProxy server is set up on a trusted host for
a site or an application specific portal in order to maintain
delegated credentials for users that are valid for a chosen
duration.

However, this solution would require architectural mod-
ifications in UNICORE and is therefore not relevant for
our solution. For this reason a specific Certification Au-
thority, the Proxy Certification Authority (Proxy-CA), has
been developed without loosing basic security requirements
like authentication, integrity, confidentially and access con-
trol [11]. The Proxy-CA is integrated into the Enhanced
TSI by the Certification Authority Interface (CAI) com-
ponent (see below).

4



4 Implementation

For the development of the Enhanced TSI we have made
the following basic implementation decisions. The software
is implemented in C and in Perl. The original UNICORE
TSI is written in Perl while the Globus APIs used in the
Job Request Interface are implemented in C. The com-
munication between the JRI, the CAI, the TSI, and the
Proxy-CA is realized via a socket mechanism. Because
changes in the respective architecture were not to be made
all functions had to be implemented in the ETSI.

4.1 The Job Request Interface (JRI)

The Job Request Interface manages the communication
between the TSI and Globus and performs

• translation of a UNICORE job description into a
RSL description,

• job submission to a Globus Gatekeeper,

• job status forwarding, and

• data transfer between UNICORE and Globus.

When the Enhanced TSI is started a socket connection
is established between the TSI and NJS. The TSI waits
for UNICORE requests like submit, status, or retrieve out-
put. When a submit request is received, the JRI creates
an RSL string from the UNICORE internal format. The
RSL string contains especially the body of the user’s job,
the resource requests in Globus syntax, the GASS server
URL, and the location where to return the output files.
In addition the JRI initializes a GRAM client and a GASS
server using the Globus API. Via the GRAM client the JRI
submits the RSL string to the designated Globus Gate-
keeper. The JRI also registers for a callback mechanism
with Globus. The Gatekeeper returns an identification of
the GRAM Job Manager to the JRI. The JRI uses this
information to establish the correspondence between the
UNICORE job identifier and the Globus identifier. The
information is maintained in a table and allows to relate
output and status information returned by Globus to a
particular UNICORE job.
The job now executes under control of Globus, indepen-
dent of UNICORE. Whenever the job status changes,
Globus returns the new status to the JRI via callback auto-
matically. The JRI translates this status into a UNICORE
status description and saves it in a table. If the user re-
quests a new job status, the TSI receives the request, and,

instead of issuing a qstat command to a local batch system,
the current contents of the table are filtered and the status
information from the user’s jobs is returned to the client.
Upon job completion Globus sends back the results to the
GASS Server which saves the data in a location previously
designed by the JRI. Output data is now available to the
UNICORE user in the normal fashion.

4.2 The Certification Authority Interface
(CAI)

The Certification Authority Interface bridges the TSI and
the Proxy-CA to obtain a temporary Globus proxy cer-
tificate and to sign the Globus job generated in the JRI.
The UNICORE job submitted to the target system was
signed with a UNICORE user certificate. Globus accepts
proxy certificates generated by any trusted CA. The CA
which is part of the Extended TSI is trusted by the Globus
execution system participating in this project. Implicitly
the UNICORE CA is also trusted. The Proxy-CA runs on
a dedicated secure server to protect it from unauthorized
access.
The proxy certification required by Globus is obtained as
follows (see Figure 4): For each submit request, the CAI
extracts the username from the job request and transmits
it to the Proxy-CA. The Proxy-CA maintains a database
containing username, Globus user certificate, and proxy
certificate. First, the Proxy-CA checks if the username
exists in the database. If it does not exist, a Globus cer-
tificate is generated by the CA and stored in the database.
If the username exists, and therefore also a Globus certifi-
cate, the proxy certificate is checked for validity. If it is
expired, a new one with a lifetime of eight hours is gen-
erated and signed with the Globus certificate. The valid
proxy certificate is returned to the CAI. It is used to sign
the job in the JRI and it is also stored in a file accessible
to the Globus GSI.

5 Status

The prototype has been implemented meeting the require-
ments outlined in section 3. It’s capabilities have been
demonstrated successfully on SC2001 in Denver. Jobs can
be submitted to Globus systems from a UNICORE client
and the results of the computation are returned to the
user. This extends the resources available to UNICORE
users and provides Globus users with a graphical job sub-
mission interface.

5



Sign UNICORE job with
user’s UNICORE certificate

[send job to target system]

Extract UNICORE username
from UNICORE job

[request Globus certificate]

Valid

cert.? [no]

[yes]

Generate temporary Globus
user proxy certificate

Certification Authority

Compose Globus job

ETSI

[submit Globus job]

Globus

Globus

Client

[send cert. to ETSI]

Fig. 4: Certificate mapping

6 Outlook

For a full integration of all tasks required by Grid users
(e.g. multi-step and multi-site jobs) additional develop-
ment is needed. To accomplish this, the project GRIP
(Grid Interoperability Project, IST-20001-32257) [12] is
funded by the European Commission with a grant period
from January 2002 to December 2003. The GRIP project
objectives are among others

• A better integration of UNICORE and Globus using
the results and insights gained while developing this
prototype. This includes also possible changes in the
respective architectures. For example the certifica-
tion mechanism may be integrated into UNICORE.

• Contribution to the Grid standards proposals at the
Global Grid Forum [13] and prototype implementa-
tions of relevant standards.

• Support for bio-molecular and meteorological appli-
cations in the combined UNICORE - Globus envi-
ronment.

The UNICORE - Globus interoperation has demonstrated
the feasibility of Grid interoperability. Future develop-
ments will allow both UNICORE and Globus users com-
fortable, seamless and flexible access to resources dis-
tributed in different Grids. The results of the work de-
scribed here are proof that two independent Grid devel-
opments that complement each other like UNICORE and
Globus can be combined successfully.

References

[1] “UNICORE Forum.” http://www.unicore.org.

[2] “The Globus Project.” http://www.globus.org.

[3] I. Foster, C. Kesselmann, and S. Tuecke, “The
anatomy of the grid: Enabling scalable virtual or-
ganizations,” International Journal of Supercomputer
Applications, vol. 15, no. 3, 2001.

[4] D. W. Erwin and D. F. Snelling, “UNICORE: A grid
computing environment,” in Proceedings of Euro-Par
2001, pp. 825–834, Springer LNCS 2150, August 2001.

[5] “Introduction to grid computing and the
Globus Toolkit.” Tutorial, October 2001.
http://www.globus.org/training/grids-and--
globus-toolkit/IntroToGridsAndGlobus-
Toolkit.pdf.

[6] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke,
“A security architecture for computational grids,” in
ACM Conference on Computers and Security, pp. 83–
91, ACM Press, 1998.

[7] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, and S. Tuecke, “A resource man-
agement architecture for metacomputing systems,” in
The 4th Workshop on Job Scheduling Strategies for
Parallel Processing, pp. 62–82, Springer-Verlag LNCS
1459, 1998.

6



[8] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and
S. Tuecke, “GASS: A data movement and access
service for wide area computing systems,” in Proc.
IOPADS’99, ACM Press, 1999.

[9] “Globus Toolkit developer tutorial part 5:
Ressource management.” Tutorial, June 2000.
http://www.globus.org/tutorial/slides/-
Dev20html/dev 05 gram duroc rsl/.

[10] J. Novotny, S. Tuecke, and V. Welch, “An online cre-
dential repository for the grid: MyProxy,” in Pro-

ceedings of the Tenth IEEE International Symposium
on High Performance Distributed Computing (HPDC-
10), IEEE Press, August 2001.

[11] M. Romberg, “The UNICORE grid infrastructure.”
to appear in: Scientific Programming, Special Issue
on Grid Computing.

[12] “GRIP.” http://www.grid-interoperability.org.

[13] “Global Grid Forum.” http://www.gridforum.org/.

7


