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A Coarse Outline of this Presentation

� Overview Origin3000 cluster called ‘Teras’
� General Information about `Teras’
� `Teras’ Cluster Configuration
� Key Software Components
� Batch Environment

� User Experiences Managing Resources on `Teras’
� Why Managing Resources?
� User Experiences on Managing CPU, Memory and I/O

resources

� Conclusions
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General Information about Teras (1/2)

� Dutch national supercomputer
� Funded by the Netherlands National

Computing Facilities Foundation (NCF)
� Available to the academic community of the

Netherlands
� Currently about 250 active users
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General Information Teras (2/2)
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Basic Teras Hardware Specifications

� 1024 x 500 MHz MIPS R14,000 CPUs
� 1 Teraflops/sec. theoretical peak performance
� 1 Terabyte of memory (1Gigabyte/cpu)
� 10 Terabytes of net on-line RAID5 storage

(FC RAID array, 10,000 RPM disks)
� 100 terabytes of near-line storage (tapes for

data migration, archiving and backup)
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Teras Cluster Configuration
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Key Software Components

� Operating System
� IRIX 6.5.14f
� Cpusets
� Joblimits

� Batch environment
� LSF 4.1 (with cpusets, joblimits support)

� Programming environment
� MPT 1.4.0.2 (MPI, shmem, PVM)
� MIPSpro 7.3.1.2 (OpenMP)
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Batch Environment

� Most jobs are single or MPI/OpenMP parallel
� All jobs are scheduled on a single host
� CPU and Memory requests are adapted to the

1 Gigabyte/ 1 CPU ratio
� No scheduled overcommitment on CPUs or

memory in batch environment
� Largest regularly scheduled job can have 256

CPUs or Gigabyte
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Why Managing Resources? (1/2)

� To guarantee that the requested resources by
a job are available for the duration of the job

� To achieve reproduceable timings for jobs
� To achieve the highest possible system

utilization
� Prevent monopolization of the system by 1

or a type of job
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Why Managing Resources? (2/2)

� LSF configured for the use of CPUsets
� Wrapper around LSF submit command to

enforce 1 Gigabyte/CPU ratio
� Multiple queues in LSF
� Limiting the number simultaneous runable

jobs for certain type of jobs
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System resources

� CPU resources
� The requested number of CPUs for the duration of the

job

� Memory resources
� Maximum memory usage within a job for the duration

of the job

� I/O resources
� Cannot be requested by the user or job
� Strongly depends on type of program
� Prevent monopolization by 1 job or a type of job
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Available System Tools (1/3)

� CPUsets
� Makes groups of CPUs and memory
� Processes are attached to a CPUset, child process

are automatically attached
� Regulates access to resources outside the CPUset

for processes bound to a CPUset
� Regulates access to resources within the CPUset

for processes not attached to the CPUset
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Available System Tools (2/3)

� Joblimits
� Group processes into a job container
� Set resource limits on groups of process within job

container, similar to userlimits
� When 1 process exceeds a limit, it effects all

processes with the job container
� Not all limits are destructive, processes are not

killed
� Parent process creates job container, child

processes belongs automatically to job container
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Available System Tools (3/3)

� LSF batch scheduler
� With CPUsets and joblimits support



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 15

Managing CPU resources (1/3)

� LSF settings
� 1 jobslot per CPU defined, PJOB_LIMIT=1.000
� 4 CPUs are reserved for system processes,

number of jobslots available per host = number
CPUs - 4

� LSF creates a CPUset per job
� LSF runs special daemons to determine number of free

CPUs
� LSF knows topology of Origin3000 architecture, CPUs are

select via best-fit algorithm
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Managing CPU resources (2/3)

� CPUset tokens are set via LSF_DEFAULT_EXTSCHED
� CPUSET_CPU_EXCLUSIVE defines a restricted CPUset

� Attached processes run only on CPUs allocated to the
CPUset

� Non-attached processes are not allowed to run on
allocated CPUs

� LSF creates per job a job container
� LSF defines own ULDB domain
� sets current and maximum CPU time limits on defined

queue PROCLIMIT*RUNLIMIT settings
� monitors wall-clock (RUNLIMIT) time of jobs and kills

when exceeded
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Managing CPU resources (3/3)

� MPI with CPUsets
� Normally arrayd is parent of MPI child processes
� Needs at least MPT version 1.3

� MPI master process is parent of MPI child processes

� PVM with CPUsets
� Normally 1 pvmd per user per host
� Every job must have it’s own pvmd

� Use PVM_VMID environment variable
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Managing Memory resources (1/7)

Simple memory overview

Kernel space

System 
buffers

User space

Swap devices

Virtual
Swap

Ram
memory

Memory on disk
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attached

Addressable
memory space
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Managing Memory resources (2/7)

� Memory on IRIX
� malloc() reserves logical memory, this means that

only memory counters are recalculated
� Physical memory is allocated on first touch
� System can be out of logical memory even with

physical memory available
� Virtual memory (swap) is needed to solve this

� Defined swap space without physical hardware attached
to it

� IRIX has a maximum of 1 Terabyte of virtual swap



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 20

Managing Memory resources (3/7)

� IRIX cannot calculate memory usage
� Shared memory usage is not calculated (at this moment)
� Memory usage is calculated on process basis

� LSF
� Process Information Manager (pim) calculates memory

usage
� Job memory usage on per process basis
� Has facilities to calculate shared memory usage on a per job

basis
� IRIX has limited tools to determine memory usage

� Sets current resident set size (RSS) limit in IRIX job
container, this limit does not kill jobs

� Does not kill jobs when memory limits are exceeded
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Managing Memory resources (4/7)

� CPUsets
� Managing memory resources using CPUsets is

limited
� Via CPUset tokens (MEMORY_MANDATORY +

POLICY_KILL) jobs can be killed
� Jobs are killed when far memory is accessed
� Far memory is memory outside the defined CPUset

� 1 Gigabyte/CPU ≠ 4 Gigabytes / 4 CPUs
� C-brick has 4 CPUs and 4 gigabytes of memory
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Managing Memory resources (5/7)

Local
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CPUset B
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CPUset A

Managing Memory resources (6/7)
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Managing Memory resources (7/7)

� Joblimits
� Because of the SGI MPI implementation virtual

memory can not be limited
� MPI allocates with mmap() per process-to-process

communication channel a memory block (~1 Gigabyte
per communication channel)

� 4 processes ~ 20 Gigabytes virtual memory
� 8 processes ~ 75 Gigabytes virtual memory
� 32 processes ~ 1 Terabyte virtual memory

� Interactive physical memory usage is limited
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Managing I/O resources (1/2)

� I/O resources can be split into 2 separate parts
� Hardware I/O channels
� Kernel processes handling I/O requests

� IRIX uses dynamic algorithm for allocating and
releasing system buffers (memory)

� System buffers are used for caching of file system
data
� To reduce physical reads by reuse of cached data
� Optimize physical writes (delayed write)

� Optimize data blocks to reduce head placements
� Discard physical writes
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Managing I/O resources (2/2)

� IRIX has a maximum number of system buffers (kernel
parameter nbuf ≤ 600,000), limited scalability

� I/O intensive jobs
� Jobs high rate of read()’s and/or write()’s
� Example: job with 8 processes with a high number of open

files (~ 60 per process), data (~500 Megabyte per file) and
on average ~50 Gigabyte of file system data
� Job makes 99% use of cached data
� Single job uses ~90% of the system buffer entries
� Maximum of 2 jobs on a single host, uses ~100% of the

system buffer entries
� Large indirect memory usage of cached data (60-70% of

memory on small nodes)
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Conclusions

� Memory and I/O resources are not really manageable
� SGI is developing a solution for calculating shared memory

usage
� The IRIX kernel is limited scalable for handling I/O

processes

� CPUsets and joblimits are good developments for
managing resources but the functionality and the
integration within IRIX should be extended

� The integration of the current tools (LSF, CPUset,
joblimits) is functional but has limited possibilities for
managing system resources
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Questions?

Mark van de Sanden
Senior Systems Programmer
sanden@sara.nl


