
Experiences in Managing Resources
on a Large Origin3000 cluster

CUG Summit 2002,
Manchester, May 20 2002,
Mark van de Sanden & Huub Stoffers
http://www.sara.nl



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 2

A Coarse Outline of this Presentation

� Overview Origin3000 cluster called ‘Teras’
� General Information about `Teras’
� `Teras’ Cluster Configuration
� Key Software Components
� Batch Environment

� User Experiences Managing Resources on `Teras’
� Why Managing Resources?
� User Experiences on Managing CPU, Memory and I/O

resources

� Conclusions



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 3

General Information about Teras (1/2)

� Dutch national supercomputer
� Funded by the Netherlands National

Computing Facilities Foundation (NCF)
� Available to the academic community of the

Netherlands
� Currently about 250 active users



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 4

General Information Teras (2/2)



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 5

Basic Teras Hardware Specifications

� 1024 x 500 MHz MIPS R14,000 CPUs
� 1 Teraflops/sec. theoretical peak performance
� 1 Terabyte of memory (1Gigabyte/cpu)
� 10 Terabytes of net on-line RAID5 storage

(FC RAID array, 10,000 RPM disks)
� 100 terabytes of near-line storage (tapes for

data migration, archiving and backup)



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 6

Teras Cluster Configuration

P1:
(32 CPU/GB)

Services

LSF server

P2:
(32 CPU/GB)
Interactive

Submit host

P4:
(64 CPU/GB)

Batch

P5:
(128 CPU/GB)

Batch

P6:
(256 CPU/GB)

Batch

P7:
(512 CPU/GB)

Batch



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 7

Key Software Components

� Operating System
� IRIX 6.5.14f
� Cpusets
� Joblimits

� Batch environment
� LSF 4.1 (with cpusets, joblimits support)

� Programming environment
� MPT 1.4.0.2 (MPI, shmem, PVM)
� MIPSpro 7.3.1.2 (OpenMP)



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 8

Batch Environment

� Most jobs are single or MPI/OpenMP parallel
� All jobs are scheduled on a single host
� CPU and Memory requests are adapted to the

1 Gigabyte/ 1 CPU ratio
� No scheduled overcommitment on CPUs or

memory in batch environment
� Largest regularly scheduled job can have 256

CPUs or Gigabyte



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 9

Why Managing Resources? (1/2)

� To guarantee that the requested resources by
a job are available for the duration of the job

� To achieve reproduceable timings for jobs
� To achieve the highest possible system

utilization
� Prevent monopolization of the system by 1

or a type of job



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 10

Why Managing Resources? (2/2)

� LSF configured for the use of CPUsets
� Wrapper around LSF submit command to

enforce 1 Gigabyte/CPU ratio
� Multiple queues in LSF
� Limiting the number simultaneous runable

jobs for certain type of jobs



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 11

System resources

� CPU resources
� The requested number of CPUs for the duration of the

job

� Memory resources
� Maximum memory usage within a job for the duration

of the job

� I/O resources
� Cannot be requested by the user or job
� Strongly depends on type of program
� Prevent monopolization by 1 job or a type of job



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 12

Available System Tools (1/3)

� CPUsets
� Makes groups of CPUs and memory
� Processes are attached to a CPUset, child process

are automatically attached
� Regulates access to resources outside the CPUset

for processes bound to a CPUset
� Regulates access to resources within the CPUset

for processes not attached to the CPUset



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 13

Available System Tools (2/3)

� Joblimits
� Group processes into a job container
� Set resource limits on groups of process within job

container, similar to userlimits
� When 1 process exceeds a limit, it effects all

processes with the job container
� Not all limits are destructive, processes are not

killed
� Parent process creates job container, child

processes belongs automatically to job container



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 14

Available System Tools (3/3)

� LSF batch scheduler
� With CPUsets and joblimits support



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 15

Managing CPU resources (1/3)

� LSF settings
� 1 jobslot per CPU defined, PJOB_LIMIT=1.000
� 4 CPUs are reserved for system processes,

number of jobslots available per host = number
CPUs - 4

� LSF creates a CPUset per job
� LSF runs special daemons to determine number of free

CPUs
� LSF knows topology of Origin3000 architecture, CPUs are

select via best-fit algorithm



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 16

Managing CPU resources (2/3)

� CPUset tokens are set via LSF_DEFAULT_EXTSCHED
� CPUSET_CPU_EXCLUSIVE defines a restricted CPUset

� Attached processes run only on CPUs allocated to the
CPUset

� Non-attached processes are not allowed to run on
allocated CPUs

� LSF creates per job a job container
� LSF defines own ULDB domain
� sets current and maximum CPU time limits on defined

queue PROCLIMIT*RUNLIMIT settings
� monitors wall-clock (RUNLIMIT) time of jobs and kills

when exceeded



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 17

Managing CPU resources (3/3)

� MPI with CPUsets
� Normally arrayd is parent of MPI child processes
� Needs at least MPT version 1.3

� MPI master process is parent of MPI child processes

� PVM with CPUsets
� Normally 1 pvmd per user per host
� Every job must have it’s own pvmd

� Use PVM_VMID environment variable



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 18

Managing Memory resources (1/7)

Simple memory overview

Kernel space

System 
buffers

User space

Swap devices

Virtual
Swap

Ram
memory

Memory on disk

 No hardware
attached

Addressable
memory space



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 19

Managing Memory resources (2/7)

� Memory on IRIX
� malloc() reserves logical memory, this means that

only memory counters are recalculated
� Physical memory is allocated on first touch
� System can be out of logical memory even with

physical memory available
� Virtual memory (swap) is needed to solve this

� Defined swap space without physical hardware attached
to it

� IRIX has a maximum of 1 Terabyte of virtual swap



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 20

Managing Memory resources (3/7)

� IRIX cannot calculate memory usage
� Shared memory usage is not calculated (at this moment)
� Memory usage is calculated on process basis

� LSF
� Process Information Manager (pim) calculates memory

usage
� Job memory usage on per process basis
� Has facilities to calculate shared memory usage on a per job

basis
� IRIX has limited tools to determine memory usage

� Sets current resident set size (RSS) limit in IRIX job
container, this limit does not kill jobs

� Does not kill jobs when memory limits are exceeded



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 21

Managing Memory resources (4/7)

� CPUsets
� Managing memory resources using CPUsets is

limited
� Via CPUset tokens (MEMORY_MANDATORY +

POLICY_KILL) jobs can be killed
� Jobs are killed when far memory is accessed
� Far memory is memory outside the defined CPUset

� 1 Gigabyte/CPU ≠ 4 Gigabytes / 4 CPUs
� C-brick has 4 CPUs and 4 gigabytes of memory



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 22

Managing Memory resources (5/7)

Local
Memory

C C

C C

CPUset A:
1 CPU,
Max. 4GB memory

CPUset B:
3 CPUs,
Max. 4GB memory

CPUset A

CPUset B



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 23

CPUset A

Managing Memory resources (6/7)

Memory

C C

CC

Memory

C C

CC

Memory

C C

CC

Memory

C C

CC

CPUset B CPUset B:
4 CPUs,
Max. 4GB memory

CPUset A:
4 CPUs,
Max. 16GB memory

Memory

C C

CC

Memory

C C

CC



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 24

Managing Memory resources (7/7)

� Joblimits
� Because of the SGI MPI implementation virtual

memory can not be limited
� MPI allocates with mmap() per process-to-process

communication channel a memory block (~1 Gigabyte
per communication channel)

� 4 processes ~ 20 Gigabytes virtual memory
� 8 processes ~ 75 Gigabytes virtual memory
� 32 processes ~ 1 Terabyte virtual memory

� Interactive physical memory usage is limited



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 25

Managing I/O resources (1/2)

� I/O resources can be split into 2 separate parts
� Hardware I/O channels
� Kernel processes handling I/O requests

� IRIX uses dynamic algorithm for allocating and
releasing system buffers (memory)

� System buffers are used for caching of file system
data
� To reduce physical reads by reuse of cached data
� Optimize physical writes (delayed write)

� Optimize data blocks to reduce head placements
� Discard physical writes



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 26

Managing I/O resources (2/2)

� IRIX has a maximum number of system buffers (kernel
parameter nbuf ≤ 600,000), limited scalability

� I/O intensive jobs
� Jobs high rate of read()’s and/or write()’s
� Example: job with 8 processes with a high number of open

files (~ 60 per process), data (~500 Megabyte per file) and
on average ~50 Gigabyte of file system data
� Job makes 99% use of cached data
� Single job uses ~90% of the system buffer entries
� Maximum of 2 jobs on a single host, uses ~100% of the

system buffer entries
� Large indirect memory usage of cached data (60-70% of

memory on small nodes)



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 27

Conclusions

� Memory and I/O resources are not really manageable
� SGI is developing a solution for calculating shared memory

usage
� The IRIX kernel is limited scalable for handling I/O

processes

� CPUsets and joblimits are good developments for
managing resources but the functionality and the
integration within IRIX should be extended

� The integration of the current tools (LSF, CPUset,
joblimits) is functional but has limited possibilities for
managing system resources



CUG Summit May 20th 2002, Managing Resources on a Large Origin3000 Cluster 28

Questions?

Mark van de Sanden
Senior Systems Programmer
sanden@sara.nl


