
CUG 2003 Proceedings 1

Porting FCRASH to the Cray X1 Architecture

Alexander Akkerman, Ford Motor Company
Dave Strenski, Cray Inc.

ABSTRACT: FCRASH is an explicit, nonlinear dynamics, finite element code for analyzing
transient dynamic response of three-dimensional solids and structures. The code is used as a
safety research tool to simulate vehicle impact at both full vehicle and component levels. This
paper describes our experience porting FCRASH to the Cray X1 architecture and presents
performance results relative to the Cray T90 platform. .

1. Introduction

FCRASH is an explicit finite element analysis (FEA)
code written in Fortran and C programming languages.
The code consists of about 1,400 subroutines and
functions. FCRASH is one of the many FEA solvers
used at Ford Motor Company that aid in the design of
vehicles and components for crash-worthiness. The
code is used as a research tool and is currently
running on many different hardware platforms ranging
from desktop workstations to a Cray T90
supercomputer in Dearborn, Michigan.

FCRASH was chosen to evaluate the performance of
the latest Cray supercomputer, the Cray X1, to gage
the performance of other FEA tools used at Ford when
they become available on the Cray X1 architecture.
The high vector content of FCRASH and shared
memory programming model make this code a good
tool to provide insight into the potential capability of the
Cray X1 system. The scope of this evaluation will be
limited to single processor performance and
parallelism within a single node as FCRASH is
available in shared memory parallel environment only.

The strong motivation for evaluating the Cray X1 is the
result of lack of advancement in high-end computing
since the mid 1990's. The demand for the highest
possible performance continues to increase as models
continue to grow in size and complexity along with new
problems that require longer simulations. Model sizes
grew from 50,000 to 100,000 elements in the early
1990's to 500,000 and up to a million elements today.
As commercial FEA codes migrated to the distributed
memory programming model, turnaround times
remained manageable on microprocessor based
systems. However, lower time steps resulting from
smaller elements in the models and increased
simulation times for new simulations can not be

adequately addressed by simply adding more
processors to jobs. Cray X1 architecture is in a better
position to address these increased requirements as it
promises excellent single-processor performance, as
well as scaling to a large number of processors.

Before describing the work to optimize FCRASH to the
Cray X1 architecture, it is useful to review the
fundamentals of an explicit time integration based FEA
program. The purpose of this review is to analyze the
structure of the program and focus on optimization.

Central difference formulas for velocity and
acceleration:

& /u
u u

t
n

n n
+

+

= -12
1

D

&&
& &/ /

u
u u

t
n

n n

= -+ -1 2 1 2

D

Basic equation of motion:

Mu f f f
ext int

= = -

Velocities and positions can be updated as follows:

()& &/ /u u t M f fn n n
ext
n

int
n+ - -= + -1 2 1 2 1D

u u t un n n n+ + += +1 1 2 1 2D / /&

Incremental time step at n is calculated as:

()D D Dt t tn n n= +- +1 2 1 2 2/ / /

Internal element forces are defined as:

CUG 2003 Proceedings 2

f B dVint

Vc

= Ú Ts

Where: u = nodal displacement

f f
int ext

, = internal and external forces

s = element stress

B = shear displacement matrix

M = mass matrix

The main integration loop for a typical explicit
simulation program is summarized in the flow chart in
Figure 1.

It has been well known for some time that FEA codes
are rich in potential parallel constructs1. Parallelism
within a simulation code exists at several levels, from
the job or program level to the instruction level2. For a
single simulation on a parallel vector processor,
parallelization across the task or procedure (i.e. MPI,
OpenMP) and instruction level parallelization (i.e.
streaming, vectorization) provide the biggest
opportunity to performance improvement.

Calculation of the element forces provides the greatest
opportunity for streaming and parallelization. In a
typical impact simulation, element calculations
represent 60 to 80% of computational effort. Element
calculations are entirely independent and thus
inherently parallel. Element force calculations are
performed on elements of the same type and material
and can easily be vectorized.

The I/O needs of an explicit FEA solution are minimal.
The entire analysis is typically performed in memory,
I/O is only required for storing the state of simulations
at regular intervals for post-processing purposes. I/O
typically represents 1 to 3% of the total simulation
time.

2. Cray X1 overview

Before describing the porting of FCRASH to the Cray
X1, it is useful to explain how the architecture differs
from the Cray T90. Comparison between the two
systems is shown in Table 1.

The biggest difference in processor architecture is the
multi-streaming capability of the Cray X1. In a way,
one CrayX1 processor could be described as four
Cray T90 cpu's tightly coupled together.

SUM INTERNAL ELEMENT FORCES

f fint

n

int

k

k

num+

=
= Â1

1

CALCULATE NODE ACCELERATIONS

()&u M f fn
ext
n

int
n+ - + += -1 1 1 1

ADVANCE NODE POSITIONS

u u t un n n n+ + += +1 1 2 1 2D / /&

t t t= + D

t = 0

READ INPUT

IF OUTPUT
CYCLE

IF END OF
ANALYSIS

CALCULATE TIME STEP

CALCULATE INTERNAL ELEMENT FORCES

CALCULATE CONTACT FORCES

APPLY INTERNAL AND EXTERNAL CONSTRAINTS

CALCULATE NODE VELOCITES

CALCULATE SYSTEM ENERGY

OUTPUT
SYSTEM
STATE

EXIT

Figure 1. Explicit Formulation Flowchart

The Multi-Streaming Processor (MSP) consists of four
Single-Streaming Processors (SSP), each having two
vector pipes and capable of completing four floating
point operations per clock. The compiler treats these
four SSPs as a single unit and automatically schedules
work for all four. In a simple example of double nested
loops, the Cray T90 compiler vectorizes the inner loop.
The next iteration of the outer loop will not start until
the vector pipes are free.

CUG 2003 Proceedings 3

Cray T90 Cray X1
Maximum Processors 32 4096
Shared Memory Yes upto 16 SSP
Distributed Memory No Yes
Max Memory Size 256GB 64TB
Address Space Real Memory Virtual

Memory
Vector Length 128 64
Scalar Registers 32 128
Vector Registers 8 128
Vector Mask Regs 1 64
Clock Rate (Mhz) 450 400/800
Instruction Cache None 16KB
Scalar/Vector Cache 1KB/none Shared 2MB
Vector Pipes 2 8
Max FLOPS per clk 4 16
Peak GFLOPS 1.8 12.8
BMM/popcnt/leadz Yes Yes
Vector compress/iota No Yes
64-bit arithmetic Yes Yes
32-bit arithmetic No Yes
Multi-streaming No Yes

Table 1. Comparison between Cray T90 and Cray X1.

On the other hand, the Cray X1 MSP can stream on
the outer loop and vectorize the inner loop, thus
completing four times as much work per clock. The
streaming also works on simple loops by dividing the
loop trip count into four chunks and working on them at
the same time. A similar effect could be accomplished
on the Cray T90 by inserting auto tasking directives
before the loop (i.e.: CMIC DO ALL), however, these
directives introduce a significant overhead of starting a
parallel loop as compared to streaming.

The memory architecture on the Cray X1 is another
major consideration, especially when porting a code
designed for shared memory systems. FCRASH on
the Cray T90 is able to utilize the entire system (up to
32 cpus), but limited to four MSP on the Cray X1.
Scaling beyond four MSPs could be accomplished by
utilizing the distributed memory programming model,
however, outside the scope of this evaluation.

3. Porting Issues

As we started this project, two issues have emerged
that slowed down our progress: the availability of Cray
X1 resources and the rapidly changing compiler
environment. The Cray X1 system utilized for this
work, located in Chippewa Falls, Wisconsin, had
limited availability, often busy or restricted to dedicated
users. Compilers and various libraries were improving
rapidly. However, in the course of our work, we

encountered numerous problems dealing with issues
that seemed to come and go as new versions were
introduced. As we utilized 3 to 4 models in this project
at any point in time, we had difficulties with some
models but not others, and with executables compiled
with varying optimization flags. With changes in the
environment, it was difficult to keep track of the current
state of the code and multiple tests of identical jobs
had to be repeated.

On the positive side, we filed about a dozen Software
Problem Reports, and contributed to the improvement
of the development environment. Availability of the
trigger environment and cross compilers made this
project possible, allowing us to work off line while the
Cray X1 was not available.4. Arabidopsis Data File.

4. Test Model

The model we chose for tracking our performance
optimization is shown in Figure 2. This is a component
level model, consisting of 88,000 shell elements, about
75% of them four-node quadrilaterals and the
remaining 25% three-node triangular elements.

Figure 2. Close-up of the test model.

We ran the simulation for 5ms at a time step of 0.15
microseconds, resulting in 33,334 cycles. Figure 3
shows a deformed shape of this model at the end of
the 5ms simulation.

CUG 2003 Proceedings 4

Figure 3. Close-up of the deformed test model.

5. Results

Our first successful run produced about 750 MFLOPS,
a good first step for the early compilers relative to the
510 MFLOPS we achieved with the same model and
mature compilers on the Cray T90.

COMPILER FLAGS

As compilers improved, we settled on the following
compiler flags:

 -V -rm -dp -s default64

 -O inlinefrom = inlinelib.F

 -O inline3, scalar3, vector3, stream3, task0

The -dp -s default64 options were chosen to provide
compatibility with the Cray T90 version. This
combination, along with FCRASH being written in
double precision, compiles the code using 64 bit
floating point numbers and 64 bit integers. In the future
we intend to switch to 64 bit floating point and 32 bit
integer implementation with the hope of improving
performance from reduced memory traffic and higher
cache utilization.

The -V -rm are standard Cray compiler options for
printing out the compiler version and generating a
listing file that contains loop marks that help in the
understanding of the compilation process.

We are using six arguments for the -O option which
controls the optimization level. It is convenient to

specify each level of the compiler options. Currently
we are using two options for inlining. The option
"inlinefrom" pulls the inline code from a file that
contains small, often used routines as determined from
our development effort on the Cray T90, and inline3
specifies the level of automatic inlining. We are also
using the highest level of optimization for the scalar,
vector and streaming units of the compiler. Since we
are focused on single MSP performance, task0 turns
off all shared memory parallel directives, present in our
code.

Applying these compiler flags improved our
performance to 901 MFLOPS. This performance was
achieved with the vector blocking factor of 256 and
page size of 16M. The effects of the vector blocking
factor and page size on performance are described in
the following sections.

VECTOR BLOCKING FACTOR

The next step was to optimize the blocking factor that
is typically used as an inner loop trip count in the
element force calculations and elsewhere in the code.
Higher blocking factors generally improve single
processor performance, although potentially at the
expense of lower parallel performance. Parallelism is
achieved by distributing blocks of elements to different
processors and smaller blocking factors result in more
blocks and thus better load balancing. We used 256 in
the Cray T90 version. This number seemed too low on
the Cray X1, given its 8 vector pipes. As we varied the
blocking factor from 128 to 1024, our performance
changed, as described in Figure 4a. In the figure, the
horizontal axis is the blocking factor and the vertical
axis is the performance in MFLOPS for our test model
run on a single MSP.

Even though the best performance was accomplished
with the blocking factor of 768, we chose to keep it at
512, to provide a better opportunity for parallel
performance, the ultimate goal of this project.

PAGE SIZE

The Cray X1 system allocates memory in units of
pages. Pages that are allocated to a user program for
the executable itself are referred to as text pages. All
other pages allocated to user tasks are called “other”
pages. The size of a memory page is not fixed and can
be set separately by the user for text and data pages.
The size of a page can range from 16KB to 4GB5.

The hardware mechanism that translates virtual
addresses to physical has limited space to retain
page-by-page translation tables. This suggests that
the user should specify the appropriate size of both
text and data pages as part of the aprun command.

CUG 2003 Proceedings 5

The option used for the command is –p
<text_size>:<user_size>. In Figure 4b we show the
program performance, in MFLOPS, as a function of
the page size. For simplicity we chose the same page
size for both text and user pages.

0

200

400

600

800

1000

1200

128 256 512 640 768 896 1024

4a) Performance for different vector blocking factors
(page size = 16M)

980
985
990
995

1000
1005
1010
1015
1020
1025

16K 1M 4M 16M

4b) Performance for different page sizes (vector
blocking factor = 512)

Figure 4. Changes in performance by modifying vector
blocking factors and page size argument.

In Figure 5 we show the actual number of memory
references made per translation table miss. Higher
number of memory reference between misses
translates into higher performance.

As can be seen from figures 4b and 5, larger page
sizes result in better code performances due to
reduced calculations for the page translation tables.
They also show the diminishing returns for larger page
sizes, big enough to hold most of the addresses.

0

50

100

150

200

250

300

16K 1M 4M 16M

Figure 5. Number of memory references (million) per
translation table miss for different page sizes.

PROFILE TOOL PAT

The performance tool used on the Cray X1 is called
PAT (Performance Analysis Tool). The tool works like
many traditional profiling tools and monitors the code
to generate a profile of how much time is spent in each
part of the code. A very useful feature of the PAT
program is its ability to provide streaming information.
The profile not only shows how much time is spent in
each routine, but also the amount of time used in each
steam. For example, profiles pointed out several
problems in the early compilers as quite a few
subroutines were using only one stream. By analyzing
those parts of the code, and adding streaming
directives (i.e. !CSD$ PREFERSTREAM) the problems
were corrected and performance improved.

MSP vs. SPP

As mentioned above, while profiling the performance
of our code, we noticed several routines showing a
great deal of imbalance in utilization of four SSPs
within an MSP processor. In some cases we were able
to improve the balance by inserting directives in front
of the loops in the code, however, we feel that this
work should be done by compilers and hope that this
issue diminishes as compilers mature.

Another approach is to utilize SSP as independent
processor units. By adding –Ossp as the compiler
option, the MSP is effectively split into four separate
processors. To evaluate this alternative, we decided to
measure streaming performance of MSP by running
the code in MSP and then again in SSP modes,
comparing the difference. We measured 1123
MFLOPS in MSP mode and 685 in SSP, a ratio of 1.6.
This translates into effective use of 1.6 out of a
possible four SSP streams. Ideally, MSP performance
should equal four times the SSP.

CUG 2003 Proceedings 6

The effective speedup from steaming of 1.6 is lower
than we had hoped; however, in addition to multi-
streaming, Cray X1 architecture provides an
alternative to utilize the four SSPs by moving
parallelization from the streaming level to the tasking
level. Even though the parallelizaton at the tasking
level is burdened with additional overhead, a parallel
scalable code has the potential of higher overall
performance by utilizing this option. We have not yet
performed this test on FCRASH. However, given the
current state of the compilers and FCRASH scaling
performance on other platforms, we may achieve
better performance running in parallel on four SSPs
relative to a single processor MSP.

PARALLELIZATION

The Cray X1’s implementation of OpenMP has not yet
been released as of the time of this report. We had
access to an early beta version; however, we chose to
focus on a single processor performance before
considering parallelism. Considering Cray’s move
toward industry standard by adopting OpenMP for
shared memory parallelism, we don’t anticipate major
issues in building a parallel executable.

6. Conclusions and next steps

This paper is a report on a work in progress. Our effort
is far from over. As access to Cray X1 hardware
becomes easier and development environment (mainly
compilers and libraries) stabilize and mature, we
expect to continue to make improvements in our
code’s performance. Current performance of little over
two times the Cray T90 is a good start but well below
our goal of matching Cray T90’s performance as
measured by the percent of peak. Our current 8% of
MSP peak certainly leaves much room for
improvement. However, 21% of SSP peak is very
encouraging.

Finally, we have not had an opportunity to evaluate
Cray X1’s parallel performance. As single processor
(SSP and MSP) performance improves, parallelism
within a four-MSP (or 16 SSP) node will be the next
topic of our attention.

7. References

[1] C. H. Farhat and L. Crivelli, A General approach to
Nonlinear FE Computations on Shared Memory Multi-
processors, Rep. No. CU-CSSC-87-09, University of
Colorado, Boulder, CO, 1987.

[2] K. Hwang, F.A. Briggs, Computer Architecture and
Parallel Processing. McGraw-Hill, 1984.

[3] Cray Research Inc., UNICOS Performance Utilities
Reference Manual, SR-2040 7.0, May 1992.

[4] C. H. Farhat, E. Wilson and G. Powell, Solutions of
Finite Element Systems on Concurrent Processing
Computers, Engineering Computing, Vol 2, pp-157-
165, 1987.

[5] Cray Inc., Cray X1 Application Programming and
Optimization Student Guide, TR-X1PO-B, 2003.

[6] J. G. Malone, Parallel Nonlinear Dynamic Finite
Element Analysis of Three-Dimensional Shell
Structures, Computers & Structures, Vol. 35, No. 5,
pp. 523-539, 1990.

8. About the authors

Alexander Akkerman is a senior technical specialist in the
Numerically Intensive Computing (NIC) department of Ford
Motor Company. He can be reached at 313-337-1634 or
aakkerma@ford.com . Dave Strenski is an application
analyst for Cray Inc., located onsite at Ford Motor
Company. He can be reached at 313-317-4438 or
stren@cray.com .

