
1

SX-6 Compare and Contrast

Thomas J. Baring
Arctic Region Supercomputing Center

University of Alaska Fairbanks

ABSTRACT: The Arctic Region Supercomputing Center (ARSC) installed a single 8-CPU
Cray SX-6 node, and made it available last August to the broader U.S. HPC community for
benchmarking and testing. Our experiences of 6 months suggest that, to those accustomed to
traditional Cray PVP systems, the SX-6 architecture and user environments are
simultaneously familiar and peculiar. We also note that performance sustained by
vectorizable user codes, per SX-6 CPU, has been gratifying while achieving additional
speedup from multiple CPUs has proven more elusive.

Introduction

The Arctic Region Supercomputing Center (ARSC),
located on the campus of the University of Alaska
Fairbanks, supports computational research in science and
engineering with emphasis on high latitudes and the Arctic.
The center provides high performance computational,
visualization, networking and data storage resources for
researchers within the Department of Defense and other
government agencies and the University of Alaska and other
academic institutions.

For a period of two years, to end in June 2004, ARSC
and Cray Inc. are jointly managing a Cray SX-6 for their
mutual and individual benefit. The system is physically
installed in Alaska but Cray personnel located primarily in
Mendota Heights, MN provide system administration and
operations over a dedicated VPN. ARSC and Cray maintain
completely disjoint help desks, account administration
procedures and policies, user bases, and front-end
workstations (for user authentication and access as well as
support of programming environment cross-compilers and
GUI tools). ARSC and Cray personnel meet frequently by
email and teleconference to discuss issues as they arise and
to manage shared elements of the system, such as the
structure of the NQS queues, and the operations schedule.

As sole North American distributor of the SX-6, Cray
uses the system to benchmark codes, teach classes, and
provide early access to prospective clients. ARSC makes
the system available for evaluation as a unique service to the
wider U.S. HPC community--including individuals who are
otherwise non-ARSC users.

This paper attempts to give a vicarious experience of
using the SX-6 through descriptions and porting case-

studies, using UNICOS and traditional Cray PVP systems as
primary points of reference.

SX-6 Architecture Overview

The SX-6 installed at ARSC is a single cabinet, 8 CPU
node with 64 GB of symmetric shared memory, and 1.1 TB
disk. ARSC-sponsored users have additional access to 420
GB of disk, cross-mounted from ARSC’s SGI Octane 2
front-end host.

Each CPU is a single-chip 8-way vector processor. The
vector units operate at 500 Mhz, and as multiplication and
addition can be chained, the peak performance of a single
vector pipe is 1 GFLOPS. Given 8 pipes, the peak
theoretical performance per processor is 8 GFLOPS. The
scalar units also operate at 500 Mhz and have a theoretical
peak of 1 GFLOPS. The 8 vector registers per CPU are 256
elements long and CPU-Memory bandwidth is
32GB/sec/CPU. There is no bit-matrix multiply unit, and
the system runs the SUPER-UX operating system, a Unix
variant.

SX-6 User Environment

Front-End Host
Cross-compilers and other programming tools, running

on an SGI front-end workstation, are well-integrated into the
SX-6 user environment. Although “self-compilers” are
installed on the SX-6, users are encouraged to compile on
the front-end system, and to move their executable to the
SX-6 using one of the cross-mounted file systems or the scp
command. It’s also possible to compile, debug, profile, and
run from within the “PSUITE” GUI environment running on
the front-end, Similarly, the GUI-based MPI profiling tool,
VAMPIR/SX runs on the front-end.

2

Parallel Programming models:
Parallel programming models are available as follows:

Autotasking Yes
OpenMP Yes
MPI Yes
MPI-2 “almost all”
SHMEM No
Coarray Fortran No
UPC No
HPF Yes

Table 1: SX-6 Programming Models

Compilers/libraries:
The SX-6 supports the Fortran 90, C, and C++

programming languages. Both 32- and 64-bit IEEE numeric
units are supported and programs are compiled in either of
two modes: default or wide precision. In the former, Fortran
REAL and INTEGER are all 32-bit, and size of variables
declared explicitly with the KIND attribute or “*” are
honored.

“Wide” precision overrules all explicit size
specifications, forcing them and default variables to 64-bit.
The user must link the correct version of libraries for which
both default and 64-bit version exist. For example, the 64-
bit version of libblas.a is libblas_64.a and that of libmpi.a
versus libmpiw.a. Use of “wide” precision is a close
approximation to traditional UNICOS PVP 64-bit precision.

Fortran Standard Features
In most respects, the set of features provided in the SX-

6 f90 compiling system (termed the “overall” compiler) is
familiar to Cray users. Here’s a partial list of options :

SX-6 f90 option C r a y f t n
Comparison

[{-c | -Nc}] Same
[-Dname[=value]] Same
[-d [a][C][D][W][w]] Same (disable)
[-e [a][C][D][W][w]] Same (enable)
[{-Ep | -EP | -NE}] CPP control
[{-f0 | -f3 | -f4}] Fixed/free format
[{-ftrace | -Nftrace}] Tracing
[-G {global | local}] taskcommon
[{-g [v] | -Ng}] Same (debugging)
[-I directory-name] Same
[-L library-directory-name] Same
[-l library-name] Same
[-o object-file-name] Same
[-p | -Np}] Profiling
[{-R0 | -R1 | -R2 | -R3 | -R4
| -R5}]

Listing, loopmark,
etc.

[-Wa "option-string"] Same (“as”
options)

[-Wc "option -string"] “cc” options
[-Wf "option -string"] Same (“f90”

options)
[-Wl "option -string"] Same (“ld”

options)
[-Wp "option -string"] “cpp” options

Table 2: SX-6 f90/Cray ftn options

Optimization/Vectorization/Parallelization
There’s divergence between the SX-6 and Cray

compilers regarding the number of scalar optimization
(termed just “optimization” in the SX-6 world),
vectorization, and parallelization options. SX-6 users have
greater low-level control over compilation. On Cray
systems, here is the general list of 22 features available
through “-O”:

0, 1, 2, 3
aggress, noaggress
bl, nobl
allfastint, fastint, nofastint
ieeeconform, noieeeconform
inline0, inline1, inline2, inline3
inlinefrom=source
loopalign, noloopalign
msgs, nomsgs
negmsgs, nonegmsgs
modinline, nomodinline
Nointerchange
overindex, nooverindex
pattern, nopattern
recurrence, norecurrence
scalar0, scalar1, scalar2, scalar3
stream0, stream1, stream2, stream3
task0, task1, task2, task3
taskinner, notaskinner
threshold, nothreshold
vector0, vector1, vector2, vector3
vsearch, novsearch
zeroinc, nozeroinc

Table 3: Cray ftn “–O” options:

The highest-level interface to the optimization options
through the Cray compilers is “-O[0|1|2|3]”, each of which
controls a set of lower level options. For instance, on the
SV1ex, “-O3” is equivalent to:

Recurrence,Scalar=2,Vector=3,VSearch,Task=2

SX-6 f90 offers two analogous high-level controls: “-P”
for automatic parallelization and “-C” for scalar
optimization and automatic vectorization:

f90 or sxf90
[-C{debug|ssafe|vsafe|sopt|vopt|hopt}]
[-P{auto | openmp | multi | stack | static}]

As in Cray ftn, each high-level option defines a set of
what are termed “detailed” options, all of which are
accessible through the high-level “-Wf…” option. The
difference is simply the number of such options over which
the user has control. Presumably, the Cray compilers
perform the same types of optimization, but they are largely
hidden from the user behind intermediate levels (like
“scalar[0-3]”). Here is the complete list of 19 scalar and 39
vectorization/parallelization SX-6 detailed options:

3

SX-6 f90 detailed options for optimization:
[{-ai | -Nai }]
[{-fusion | -Nfusion}]
[{-i[{errchk | noerrchk}] | -Ni}]
[-O [{chg | nochg}]
[{darg | nodarg}]
[{div | nodiv}]
[extendreorder]
[reorderrange=bblock]
[{if | noif }]
[{infomsg | nomsg }]
[{iodo | noiodo}]
[{move | nomovediv | nomove}]
[{overlap | nooverlap}]
[{unroll[={nlevel]| nounroll}]
[{zlpchk | nozlpchk}]
[-prob_generate]
[-prob_use]
[-prob_dir=directory-name]
[-prob_file=filename]

Table 4: SX-6 f90 scalar optimization detailed options

SX-6 f90 detailed options for
vectorization and parallelization:

[-common {global|local}]
[-moddata {global|local}]
[-ompctl [{condcomp|nocondcomp}]]
[-pvctl[{altcode={{dep|nodep}|{loopcnt|noloopcnt}}|
noaltcode}]
[{assoc | noassoc}]
[{assume | noassume}]
[{chgpwr}]
[{cncall=routine-name[,routine-name]}]
[{collapse | nocollapse}]
[{compress | nocompress}]
[{divloop |nodivloop}]
[{expand=n | noexpand}]
[{for[=n] | by=n}]
[{fullmsg | infomsg | nomsg}]
[{ifopt | noifopt}]
[{inner | noinner}]
[{listvec | nolistvec}]
[{loopchg |noloopchg}]
[loopcnt=n]
[{lstval | nolstval}]
[{matmul | matmulblas | nomatmul}]
[{outerstrip | noouterstrip}]
[{outerunroll | noouterunroll}]
[{parcase | noparcase}]
[{parthreshold[=n] | noparthreshold}]
[res={whole | parunit | no}]
[shape=n1[,n2]...]
[{split | nosplit}]
[{vchg | novchg}]
[vecthreshold=n]
[{verrchk | noverrchk}]
[vl={fix256 | max512 | fix512}]
[{vlchk | novlchk}]
[{vr64 | vr128 | vr256 | vr512}]
[vwork={ stack | statick}]
[vworksz=n[M]]]
[-reserve=n]
[-tasklocal {macro|micro}]
[{-v |-Nv}]

Table 5: SX-6 f90 detailed vectorization/optimization options

For an analysis of the effects and potential usefulness of
the detailed options, see the section on the RIPPLE code,

described below. Also, note that optimization of FLAPW
(below) relied on access to these options in order to switch
the one option off which was preventing use of the overall,
“-C vopt” setting.

C/C++
On the SX-6, there remains an apparently demoted,

standalone C language compiler. The preferred approach to
compiling C code is to use the C++ compiler, giving it the
option “c++ … -Xa”. The C++ optimization and
vectorization/parallelization options are consistent in many
respects with the f90 compiler. For instance, the “-C” and
“-P” overall options are the same, as is access to detailed
options. The set of detailed options is reduced to 9 scalar
and 20 vectorization/parallelization.

Run Time Environment
Another contrast appears at run time. While UNICOS

seems to prefer commands and compiler options to define
features of the run-time environment, SUPER-UX uses a
large set of environment variables. Table 6 gives the 25 (of
39 total) variables for which an approximate UNICOS
equivalent exists (based on the authors’ experience).

SUPER-UX Run-time
Parameters

Functionally similar
UNICOS command(S)

Exception handling
F_ERRCNT, F_ERRHALT,
F_ERRMSG, F_ERROPTn,
F_EXPRCW

/etc/cpu

I/O Stats
F_FILEINF Procstat, procview

Profiling
F_FTRACE f90 –ef, flowtrace

Performance data
F_PRINFDIFF, F_PROGINF hpm, ja

I/O control
F_FMTBUF, F_HSDIR, F_INPUT,
F_MEMWAIT, F_NORCW,
F_OUTPUT, F_PARTRCW,
F_POSITION, F_PROMOTE,
F_SETBUF[u],
F_SETBUFALIGN[u],
F_UFMTADJUST[u],
F_UFMTENDIAN, F_UFMTFLOAT1,
F_UFMTFLOAT2, F_UFMTIEEE,

assign

Table 6: SX-6 Run Time parameters

Exception handling
The options listed above for controlling run-time

handling of exceptions provide an impressive level of detail
to the user. For example, F_ERRCNT sets the number of
exceptions which will be detected and reported before the
program halts. F_ERROPTn controls handling of one

4

specific error number or range of numbers, and takes the
following arguments:

setenv F_ERROPTn n1, n2, alt, err, m, t, a,
cnt

The description of this one run-time parameter takes a
couple of pages in the SX-6 manual. Sparing you the details
(available in ARSC HPC Newsletter issue 264 [1]), here is
an example which would instruct the operating system to:
not change the behavior for error 274 only, not have a user
defined routine handle the error, not trap IO errors, not issue
error messages, not trace back, not terminate, and finally,
not count the errors in this class:

setenv F_ERROPT1 274,274,0,0,2,2,2,2

A setting like this could be made for every error
number of concern, or none at all.

Performance Analysis
As mentioned above, making the following assignment

at run-time causes performance data for the given execution
to be dumped:

F_PROGINF=DETAIL

Here’s an example of the output from a 4-CPU auto-
parallelized run of the FLAPW code, which will be
described in more detail below. It’s given here to show the
range of counters and data provided.

 ****** Program Information ******
 Real Time (sec) : 719.253574
 User Time (sec) : 1229.029483
 Sys Time (sec) : 120.601631
 Vector Time (sec) : 219.913104
 Inst. Count : 92135082895.
 V. Inst. Count : 9978846506.
 V. Element Count : 1126941276992.
 FLOP Count : 636068564467.
 MOPS : 983.782350
 MFLOPS : 517.537271
 MOPS (concurrent) : 2773.263985
 MFLOPS (concurrent) : 1458.927855
 VLEN : 112.933020
 V. Op. Ratio (%) : 93.205160
 Memory Size (MB) : 144.000000
 Max Concurrent Proc. : 4.
 Conc. Time(>= 1)(sec): 435.983563
 Conc. Time(>= 2)(sec): 282.813372
 Conc. Time(>= 3)(sec): 281.641796
 Conc. Time(>= 4)(sec): 228.592612
 Event Busy Count : 0.
 Event Wait (sec) : 0.000000
 Lock Busy Count : 0.
 Lock Wait (sec) : 0.000000
 Barrier Busy Count : 0.
 Barrier Wait (sec) : 0.000000
 MIPS : 74.965722
 MIPS (concurrent) : 211.326964
 I-Cache (sec) : 10.048854

 O-Cache (sec) : 105.484218
 Bank (sec) : 10.659311

 Start Time (date) : 2002/12/10 14:53:10
 End Time (date) : 2002/12/10 15:05:09

Batch System
The SX-6 batch system is named NQS, and it includes

familiar sounding commands from UNICOS, such as
“qsub”, “qdel”, and “qmgr”. Under SUPER-UX, there are
eight different “qstat” commands: “qstat[a|c|ck|d|f|q|r]”.
Thus, “qstatc” is roughly equivalent to “qstat –c” on
UNICOS. The syntax of qsub scripts is almost equivalent,
as are most other aspects of these two varieties of NQS.

Documentation
The philosophy of giving access to details seems to

hold true with the online SX-6 manuals. The on-line
manuals are exhaustive and well-written.

SX-6 Benchmarking Experiences and
Comparisons

ARSC staff members and users have ported several user
application codes to the SX-6 as part of our research on this
system. In this section, five codes, with performance
comparisons as well as porting anecdotes, are presented.

CICE
The Los Alamos Sea Ice Model, CICE version 3.1 was

ported to the SX-6 and SV1ex. CICE is engineered to serve
as a component of a fully coupled global climate model, but
for these tests, was run as a standalone application. It is
parallelized using MPI but contains an alternate code path,
selected by makefile options, to produce a non-MPI version.
For these tests, MPI, single processor, and auto-parallelized
versions were used.

An ARSC user provided CICE with 16GB of IEEE
formatted binary input data files and restart file. After some
effort, attempts to convince the SV1ex version to read the
restart file or run in MPI mode were both abandoned. Thus,
the only SV1ex data available are single CPU or autotasked,
and starting from the 0th iteration as opposed to using the
restart file. For performance comparisons to be valid, all
SX-6 runs (except that noted in table 7 as having used a
restart file) were also made from the 0th iteration.

The following table shows the performance of this code
on 1-CPU. All SX-6 data were collected on a dedicated
system while all SV1ex data were collected on a lightly to
moderately loaded system. One day of ice formation was
simulated. The SX-6 run was over 3.5 times faster based on
wall-clock time than the SV1ex run.

5

Table 7: CICE performance results, 1-CPU, 1-day simulation
runs

As shown in the following graph, the MPI version
achieved good but not exemplary parallel speedup on the
SX-6. The restart runs had better performance and worse
speedup, but this improved with longer runs. This is an
advantage to the user, who simulates multiple years, and
thus almost invariably uses both restart files and maximum
CPU time.

In addition to explicit parallelism, the single CPU
version of CICE was auto-parallelized on both platforms,
using the following compiler options:

SX-6: f90 -sx6 -Wf,"-pvctl noverrchk" -P
auto -C vopt

SV1ex: ftn -Otask3,aggress

4

3

2

1C
IC

E
 W

al
lc

lo
ck

 S
pe

ed
up

4321
NCPUS

SX-6 MPI Runs
1 Day
1 Day (restart)
10 Days (restart)

Auto-Par., 1 Day
 SV1ex
 SX-6

FIGURE 1: CICE speedup

The auto-parallelization results graphed indicate that for
this code, SV1ex autotasking was far more successful than
SX-6 auto-parallelization at providing speedup. A possible
explanation is that a single SX-6 CPU has 4 times the
internal capacity of a single SV1ex CPU to exploit
parallelism (8 versus 2 vector pipes), and thus the SX-6
compiler may have exhausted most of the code’s loop-level
parallelism in saturating one CPU, leaving little work for
multiple CPUs. In fact, the SV1ex 4-CPU multitasked run
takes 6256 seconds of wall-clock time compared with 2931
seconds for the SX-6 1-CPU run, even though the peak
theoretical performance of 4 SV1ex CPUs equals that of 1
SX-6 CPU. Single-CPU vectorization on one SX-6 CPU is

more successful than the combination of vectorization and
autotasking on the SV1ex.

Here are some lessons learned about the SX-6 in
porting this code. In the first of three data size problems,
the “-ew” flag to force all storage to 64 bits is not necessary
for this code. It uses Fortran 90 “kind” attributes
extensively, and failed when they were overridden by “-
ew.” Second, on the SX-6, unlike the Crays, the default unit
size for direct access file record lengths is 8-bytes. Thus,
opening a file with OPEN (... RECL=16...), for instance,
implies that each record is 8*16 (rather than 16) bytes long,
and READ statements failed by reading past the ends of
files. This was corrected by making this setting at run-time:

export F_RECLUNIT=BYTE

Third, run-time “"floating-point data overflow" errors
occurred on the SX-6 because several functions were
declared as default real type, which is 32-bits,

real function ice_global_real_minval(nc,work)

while the function return values were assigned to 64-bit
variables,

real (kind=dbl_kind) :: amin
amin = ice_global_real_minval(1,timerw)

The correction was straightforward:

real (kind=dbl_kind) function &
ice_global_real_minval(nc,work)

ROMS
Kate Hedstrom of ARSC ported the Regional Ocean

Model System (ROMS), OpenMP version 1.9, to the SX-6
and compared performance against an IBM Regatta Power4
server. Performance results for 1-CPU runs are given in the
following tables for two ocean configurations. The
configuration of scientific interest to the user, shown first,
has 512x64x30 grid points and full physics including
vertical mixing. The user reports that this version does not
perform well because computations in the vertical
dimension do not vectorize, and this scalar component
comes to dominate execution time. (The performance tool
used on the Regatta, “hpmcount” reports Mflip/s – million
floating point instructions per second – rather than
MFLOPS).

Table 8: ROMS performance result, 1-CPU runs, full-physics
configuration

System
CPU
PeakPerf
(gflops)

Wall-clock
time (sec) mflops

Percent of
CPU
PeakPerf

Restart
File Used

SV1ex 2.0 10703 158 8% No
SX6 8.0 2931 670 8% No
SX6 8.0 1488 1027 13% Yes

System
CPU PeakPerf
(GFLOPS)

Wall-clock
time (sec)

Mflips or
Mflops

Percent of
CPU
PeakPerf

Regatta 5.2 1444 439 8.4%
SX6 8.0 1439 405 5.0%

6

The user also ran two idealized problems with specified
mixing (Table 9) which do vectorize well. These were run
on both 160x160 and a 400x400 grids, and the larger grid
was not run on the Regatta.

Table 9: ROMS performance result, 1-CPU runs, Test
Configuration

Parallelism in this implementation of ROMS is coded
explicitly with OpenMP, and as the full physics and
160x160 idealized problem results shown here demonstrate,
the code scales reasonably on both systems. These runs
were made on lightly loaded, but non-dedicated systems.

8

7

6

5

4

3

2

1

R
O

M
S

 W
al

lc
lo

ck
 T

im
e

S
pe

ed
up

8642
NCPUS

Full Physics
 SX-6
 Regatta
 SV1ex

Idealized case

 SX-6
 Regatta

Figure 2: ROMS speedup, 160x160 case

Further work could be done to improve scalability. In
particular, ROMS allows the data to be distributed across
processor grids of any dimension. Arrays in the above 4-
CPU runs were decomposed in a 1x4 arrangement, the 8-
CPU runs in a 1x8 arrangement, but further tests on the
Regatta showed that 8-CPUs in a 2x4 arrangement increased
speedup on that system from 4.0 in the 1x8 arrangement to
5.6.

The user reported one difficulty porting the code to the
SX-6. The following OpenMP error in the code (“SINGLE”
worksharing constructs appeared outside a parallel region)
did not cause problems on the Regatta or other systems, but
lead to incorrect results on the SX-6. By deleting the
“SINGLE” directives, the user obtained correct runs on the
SX-6.

!
C$OMP SINGLE

call get_data
C$OMP END SINGLE
!
! – other serial work -
!
C$OMP PARALLEL DO
C$OMP+ PRIVATE(thread,subs,tile),
C$OMP+ SHARED(numthreads,lock)

! – work -
C$OMP END PARALLEL DO
!
! – other serial work -
!
C$OMP SINGLE
 call output
C$OMP END SINGLE

FLAPW

FLAPW (Full Potential Linearized Augmented Plane
Wave Method) is a materials structure optimization and
molecular dynamics code. Runs are compared against the
SV1ex. Performance results for 1-CPU runs are given for a
test case which reasonably approximates the user’s actual
production runs.

System
CPU PeakPerf
(GFLOPS)

CPU
time
(sec)

Mflops
Percent of
CPU
PeakPerf

SV1ex 2.0 1033 624 31%
SX6 8.0 329 1940 24%
Table 10: FLAPW Performance Results, 1-CPU

FLAPW is not parallelized explicitly, but lends itself
well to autotasking on the SV1ex, where the user is active.
Without making any effort to modify the code, auto-
parallelization was performed with the following compiler
options, and parallel blas library:

SV1ex: ftn -Otask2
SX-6: f90 –ew -P auto -Wf"-O nodarg" -

L/SX/usr/lib -llapack_64 -lparblas_64

The following graph of speedup shows the results.
Wall-clock time from dedicated runs is unavailable, so
MFLOPS were used as the basis. The assumption that a
code which lent itself to auto-parallelization on the SV1ex
would do so on the SX-6, without modification, was proven
false with FLAPW. But again, note that one SX-6 CPU has
the internal architecture to support 4 times the low-level
parallelism that can be exploited in an SV1ex CPU.

System
CPU
PeakPerf
(GFLOPS)

Wall-clock
time (sec)

Mflips
or
Mflops

Percent
of CPU
PeakPerf

Problem
Size

Regatta 5.2 496 625 12% 160x160
SX6 8.0 110 2240 28% 160x160
SX6 8.0 438 3509 44% 400x400

7

4.0

3.5

3.0

2.5

2.0

1.5

1.0

F
LA

P
W

 M
F

LO
P

S
 S

pe
ed

up

4321
NCPUS

 SX-6
 SV1ex

Figure 3: FLAPW speedup

Porting FLAPW from the SV1ex to the SX-6 required
both code modifications and tweaking of compiler and
linker options. One notable code change was required
because the code was compiled using the SX-6 “-ew” option
to mimic the 64-bit SV1ex data types. “Wide” is a powerful
option, and forces, not just the default types to 64-bits, but
also those sized explicitly. This made several generic
interfaces, such as “s_gemv” and “d_gemv,” below,
indistinguishable based on their arguments. The real and
double precision variables become identical as 64-bit reals,
and one of the two subroutines had to be eliminated from
the interface.

interface gemv
#ifndef SX6
 module procedure
z_gemv,c_gemv,d_gemv,s_gemv
#else
 module procedure c_gemv,s_gemv
#endif

#ifndef SX6
 subroutine
d_gemv(tr,m,n,alph,a,lda,x,incx,beta,y,incy)
 use kinds
 character*1 tr
 integer(kind=ikind) m,n,lda,ldb,incx,incy
 double precision :: a(:,:),x(:),alph,beta
 double precision :: y(:)

 ! – work -
 end subroutine d_gemv
#endif

 subroutine
s_gemv(tr,m,n,alph,a,lda,x,incx,beta,y,incy)
 use kinds
 character*1 tr
 integer(kind=ikind) m,n,lda,ldb,incx,incy
 real :: a(:,:),x(:),alph,beta
 real :: y(:)
 ! – work -
end subroutine d_gemv

Another requirement compiling with –ew is to
explicitly link with the correct, 64-bit versions of the system
libraries: -llapack_64 -lblas_64. Also note that the libraries
are not searched cyclicly by default, so they must either be
listed in the correct order (as shown above) or the default
over-ridden (-Wl"-hlib_cyclic").

No code modifications were made for performance, but
getting good single-CPU performance using just the
compiler options was an interesting exercise. When
compiled with the default optimization options, the code
promptly crashed. Recompiled with “ssafe”, the code ran
correctly, but at a boring 1231 MFLOPS, only twice the
SV1ex rate.

An effort was made to approach a higher level of
compiler optimization, which started by noting all possible
"compile mode" or "-C" settings. Here they are, in order of
increasing optimization (“vopt” is the default):

 -C{debug|ssafe|vsafe|sopt|vopt|hopt}

The next step was to replace “ssafe” with its equivalent set
of “detailed” options:

-Wf"-O nochg nodarg nodiv noiodo nomove
overlap nounroll" \
-Wf"-pvctl nocollapse nomatmul noouterunroll"
\
-Wf"-Nv"

Most SX-6 optimizations can be explicitly specified as
either on or off, for instance “unroll” or “nounroll”. The
“ssafe” detailed options all have the effect of turning an
optimization off. Eliminating them thus turns optimizations
back on. The above list was tested in what approximated a
binary search. It was ultimately discovered that only
“nodarg” (“dummy arguments are not subject to
optimization”) was required for the code to run correctly.
When compiled as follows:

-Wf"-O nodarg"

the code ran correctly at 1940 MFLOPS. In this case, user
control over detailed options proved quite beneficial.

Tsunami
This is the University of Alaska Fairbank’s tsunami

modeling code. It is a nested-grid finite element model
parallelized using OpenMP, tested by Andrew Lee and Tom
Logan of ARSC. The original code scaled poorly on
multiple SX-6 CPUs, and an effort was made to improve
this. The resulting modification dramatically improved both
SX-6 scalability and wall-clock time. Comparison runs
were made against the original version running on the
SV1ex, and results for runs of both the “original” and
“modified” versions on one SX-6 CPU are given in table 11:

8

Table 11: Tsunami performance, 1-CPU

The original and modified versions run 2.7 and 4.9
times faster, respectively, on an SX-6 CPU, compared with
the originial version on one SV1ex CPU.

Parallelism is explicit in this code, using OpenMP
directives. While SV1ex parallel speedup of the original
version is moderate, SX-6 speedup is dismal, as shown in
Figure 4. Although CPU time is not graphed, each
additional SX-6 CPU consumes about as much additional
CPU-time as the first. Thus, 8 SX-6 CPUs consume about 8
times the CPU time of 1 CPU, while on the SV1ex, 8 CPUs
consume a bit more than 1 CPU.

The modified version on the SX-6 dramatically
improves both wall-clock time and speedup. As described
below, this non-functional on the SV1ex, so it doesn’t
appear in the graph.

4

3

2

1

T
su

na
m

i W
al

lc
lo

ck
 S

pe
ed

up

1 2 4
NCPUS

1000

800

600

400

200

0

W
allclock T

im
e (sec)

Speedup (left axis)
 SX-6 original
 SX-6 modified
 SV1ex

Wall Time (r. axis)
 SX-6 original
 SX-6 modified
 SV1ex

Figure 4: Tsunami speedup and wall-clock time

To improve scaling on the SX-6, the “modified”
version eliminates one subroutine (DEPTHS) which did
nothing more than take a multi-component user derived type
variable and call a work subroutine (DEPTHS_INNER),
breaking the components of the derived type apart as
individual array and scalar variables. The original DEPTHS
subroutine makes this call:

 call DEPTHS_INNER(g%mj,g%mk,r,T,
* g%D,g%DU,g%DV,g%HM,g%SLO,g%UFRIC,g%VFRIC,
* g%umask,g%vmask,g%DEF)

The original DEPTHS_INNER interface looks like this:

 subroutine DEPTHS_INNER(mj,mk,r,T,

* D,DU,DV,HM,SLO,UFRIC,VFRIC,
* umask,vmask,DEF)

And the original DEPTHS_INNER subroutine contains
loops like the following, which vectorize on the SV1ex and
SX-6:

do j=2,mj
 if(umask(j,mk).eq.1.)then
 DU(j,mk)=0.5*(D(j,mk)+D(j-1,mk))
 if(DU(j,mk).lt.500.) DU(j,mk)=500.
 UFRIC(j,mk)=r*T/DU(j,mk)
 end if
end do

On this original rendition on the SX-6, profiling reveals
that a huge amount of time is consumed in call overhead to
DEPTHS_INNER, apparently in creating duplicate copies
of all the derived-type component arrays, and this work
increases linearly as CPUs are added at run-time. As the
speedup curve for the original code on the SX-6 shows, this
eliminates benefits from adding additional CPUs. On the
SV1ex, it appears that, as one would expect in pass-by-
reference Fortran, the addresses of the component arrays are
passed without array duplication, and there is no excessive
call overhead.

The modified version eliminates DEPTHS_INNER, and
simply passes the undeconstructed derived type variable,
“g,” to DEPTHS, like this:

subroutine DEPTHS(g, r, T)
use grid_params

and the loops are rewritten as follows:

do j=2,g%mj
 if(g%umask(j,g%mk).eq.1.)then
 g%DU(j,g%mk)=0.5*(g%D(j,g%mk)+g%D(j-1,g%mk))
 if(g%DU(j,g%mk).lt.500.) g%DU(j,g%mk)=500.
 g%UFRIC(j,g%mk)=r*T/g%DU(j,g%mk)
 end if
end do

On the SV1ex, the ftn compiler does not vectorize
loops (even when !DIR$ IVDEP is applied) which, due to
the ambiguity of pointer arrays, may or may not contain data
dependencies. Thus, this second form of the loop doesn’t
vectorize, and the compiler explains that there is a “possible
recurrence.” This conservative approach assures correctness
(but unvectorized performance is of course, abysmal.). The
SX-6 compiler, on the other hand, does vectorize the above
loop, and in this case, is rewarded for taking the risk,
because the different arrays are indeed disjoint in memory
and the output is correct.

RIPPLE

RIPPLE [2] is a program developed at Los Alamos
National Laboratory to model incompressible fluid flows
with surface tension on free surfaces. Prof. Zygmunt
Kowalik and Juan Horrillo at the University of Alaska

System
CPU
PeakPerf
(GFLOPS)

Wall-clock
time (sec) MFLOPS

Percent
of CPU
PeakPerf

Code
version

SV1ex 2.0 834 297 15% Original
SX6 8.0 303 909 11% Original
SX6 8.0 170 1756 22% Modified

9

Fairbanks are adapting it to the study of tsunamis and their
“run-up” on shore. It was originally developed on a Cray
running the CTSS operating system and was ported by the
developers to run on Unix workstations. Horrillo and Ed
Kornkven of ARSC ported it to the SX-6 where it is being
modified to a scale appropriate to tsunami research.

RIPPLE maintains a rectilinear mesh upon which fluid
volume and forces are calculated over a user-defined
number of time steps. Consequently, the amount of
calculation for a given simulation will depend on the size of
the grid and the number of time steps. At this writing, the
model is still being studied and calibrated with relatively
small grids. For the timings that follow, a 362x58 grid was
used over 1000 time steps which result in execution times
on the order of 100 seconds. These runs were shortened by
a factor of 10 for the sake of turnaround in our experiments.
Single CPU times, with default optimization, are compared
against the SV1ex, and, as shown here, the SX-6 CPU run is
about 3.9 times faster than the SV1ex run.

System
CPU PeakPerf
(GFLOPS)

Real time
(sec) Mflops

Percent of
CPU
PeakPerf

SV1ex 2.0 480 181 9%
SX6 8.0 123 813 10%
Table 12: RIPPLE Performance Comparisons, 1-CPU

Much of our work, below, on the SX-6 concerned
compiler optimizations, thus, we present more detailed
comparisons between the SX-6 and SV1ex. The code was
compiled and executed several times, each time attempting
to use comparable compile options. The resulting execution
times are as follows:

Compile
Event

SV1ex
Options

SX-6
Options

SV1ex
Exec
Time
(sec)

SX-6
Exec
Time
(sec)

SX-6
Speedu
p (x)

Default
optimizations

Default
optimizatio
n (-O2),
default
inlining, -dp

Default
optimization
, default
inlining,
-ew

480.56
123.1
3 3.90

Inlining,
default
optimization

-inline2 -pi nest=2
line=200 434.19

115.2
5 3.77

No inlining,
max
optimization

-O3 -Chopt
461.25

115.2
1 4.00

Inlining, max
optimization

-inline2, -O
3

pi nest=2
line=200, -
Chopt

442.22 102.2
2

4.33

Run time
profiling,
default
optimization

–ef –lperf –ftrace 1673.8
8

424.5
0

3.94

Table 13: Detailed performance comparisons, 1-CPU

As the table shows, the SX-6 runs RIPPLE about four times
faster than the SV1ex.

As our final comparison against the SV1ex, we
obtained the execution-time profiles of the two platforms. It
is a common practice when optimizing a program to do a
trace of the code in order to locate the most computationally
expensive subroutines, functions, or blocks. As expected,
the traces for a program like RIPPLE, which is
deterministic, were very similar for the two vector
architectures.

In porting RIPPLE to the SX-6, extensive exploration
of the many compiler options was made. One goal of this
test was to determine how much “tinkering” with compiler
options might be necessary to achieve optimal performance.
The following results show that the high-level –C compiler
options, in particular, the default –Cvopt option, do an
excellent job of optimizing the code. The following table
presents the differences between the –C alternatives:

Compiler
Options

Compile Time
(sec)

Avg Execution
Time (sec)

 % of -
Cvopt

-Chopt 50.26 84.93 89.77
-Cvopt 46.68 94.61 100.00
-Cvsafe 31.81 146.70 155.05
-Csopt 28.06 636.97 673.26
-Cssafe 27.28 682.40 721.28
-Cdebug 22.60 2664.81 2816.62
Table 14: SX-6 f90 high-level compiler options compared

Note that RIPPLE spends about 91% of its time in
vector instructions and 9% in scalar (according to the
“vector percent” run-time performance output from
F_PROGINF=DETAIL). Consequently, options that quash
vectorization (-Csopt, -Cssafe, and -Cdebug) will perform
poorly. -Chopt performs the best, but uses some aggressive
optimizations that do not suit all applications. We have seen
applications that abort under -Chopt but not under -Cvopt.

The second compiler option test involved the SX-6
“detailed options,” combining switches and looking for
variances in the execution times. The “control” compile
option was –Cvopt. Consequently, the analysis is looking
for differences due to adding and subracting options from
that (already high) optimization level. The differences
found were all negative; i.e., all the options that made a
significant difference to the execution time lengthened,
rather than shortened, execution time. The significant
options found are shown in table 15. Note that these all
remove an optimization function from vopt (e.g., “nodarg”,
as seen in the FLAPW section, indicates “no” “darg” – no
dummy argument optimization). There was no option
included in “hopt” which improved the performance of
“vopt.”

10

Option Tested
Default
for -
Cvopt

Significance
(Fa)

Est. %
Added to
Wall-clock
time

-O darg ÷
-O nodarg a=.01 69%

-O div ÷
-O nodiv a=.01 3%

-O extendreorder ÷
-O reorderrange=bblock a=.05 8%

-pvctl altcode ÷
-pvctl noaltcode a=.01 32%

-pvctl expand=4 ÷
-pvctl expand=12
-pvctl noexpand a=.01 2-3%

Table 15: Detailed options with significant effect when added
to -Cvopt

Options that were tested but yielded no significant change in
execution time are: –O {chg, nochg}, -O {move,
nomovediv, nomove}, -O {overlap, nooverlap}, -O {unroll,
nounroll}, –O {fusion, Nfusion}, -O {if, noif}, {-ai, -Nai},
-pvctl {ifopt, noifopt}, -pvctl {inner, noinner}, -pvctl
{assoc, noassoc}, -pvctl {collapse, nocollapse}, –pvctl
{assume, noassume}, -pvctl {loopchg, noloopchg}, -pvctl
{loopfusion, noloopfusion}, {-G, -NG}, -pvctl {outerunroll,
noouterunroll}, –pvctl {listvec, nolistvec}, -pvctl {vchg,
novchg}, -pvctl vwork= {static, stack}.

The SX-6 port itself was relatively straightforward.
The complicated make scripts that were supplied were
abandoned in favor of one generated by fmgen, a makefile
generator, which was modified to fit the directory structure
of the RIPPLE source. After a few source changes to
remove some features that were particular to the 32-bit
workstation version, the program compiled. The only other
notable part of the build process was the decision to make
use of the –ew compiler option which, as discussed earlier,
forces 64-bit storage. We note that the SX-6 appears to be
very well outfitted to host users of older Cray machines.
For example, it supplied some very old Cray routines that
RIPPLE uses which were not even found on ARSC’s SV1ex
when RIPPLE was ported to that machine. The main
differences between the SX-6 porting environment and that
of the SV1ex are summarized in the following table:

Feature Differences SV1ex SX-6

fdate(), etime(),
hostnm() functions
(presumably from
CTSS days)

Had to add these
missing functions

Supplied

kill(), ismin(), ismax(),
second() functions

Had to rename or
remove to avoid
conflict with existing
function names

No conflict

Data sizes
Compiled with “–dp”
to disable double
precision arithmetic

Compiled with –ew
to force 64-bit data
values

Double functions
dmin1(), dmax1(),
dabs(), dsqrt()

Replaced with generic
equivalents to avoid
type errors

Used as-is

IOTTY Unknown to system By default represents
“stdout” unit

Table 16: SV1ex and SX-6 porting difference with RIPPLE

Summary

Objective Measures
The SX-6 experience can be evaluated subjectively, but

first a recap of objective measures. As noted earlier, the
SX-6 f90 compiler offers the user 58 optimization options
(versus 22 for the SV1ex), 39 run-time parameters (versus
several execution control command for the SV1ex), and, of
course, each CPU is basically 4-times as strong, in vector
pipes, vector register size, and peak theoretical GFLOPS as
one SV1ex CPU, and has about 9 times the per CPU
memory bandwidth,

Speedup of the tested codes is summarized in figure 5.
In this graph, circular markers designate the OpenMP codes,
inverted triangular markers, the auto-parallelized codes, and
a square marker, the MPI code. There are four metrics of
speedup plotted, in columns. The first, labeled “SV1ex-1p”
shows the speedup for each code running on 1 SX-6 CPU
versus 1 SV1ex CPU (speedup computed as walltimeSV1ex /
walltimeSX-6). All codes but two appear in the range of 3 to
4 times faster on the SX-6. A factor of 4 speedup might be
expected given that these are fundamentally similar
architectures and the SX-6 processor offers 4 times the
performance of the SV1ex.

 As shown, however, the ROMS idealized model was
almost 11 times faster on the SX-6 than on the SV1ex. We
believe that this speedup is a function of memory
bandwidth. The computational intensity (defined as number
of numerical operations per memory access) of this model is
about one, as measured on the SX-6, and thus, its
performance is limited by the lower of the processor
performance or memory bandwidth. As previously noted,
the SX-6 provides 9 times the memory bandwidth of the
SV1ex. We conclude that this code is memory bandwidth
limited, and thus its performance is degraded relative to the
CPU capability on the SV1ex, but that on the SX-6, this
roadblock is removed.

11

Tsunami also obtained greater than the 4 times speedup
predicted by the SX-6 CPU alone. The Tsunami value is a
comparison between the modified code running on the SX-6
and the original on the SV1ex. Although Tsunami is the
sole code specifically optimized for the SX-6, we believe
the comparison is valid because the modification didn’t
affect the computational loops of the code, but only the
structure of subroutine calls. A comparison of profile
outputs reveals that the SV1ex does not suffer the excessive
call overhead which was removed for the SX-6 in the
modification. As with the idealized ROMS case, Tsunami is
memory bandwidth limited on the SV1ex, as described in
[3], and suggested by its “vector percentage” of over 99%
on the SX-6, as measured under F_PROGINF. The worst
code in the SX-6 versus SV1ex single CPU comparison is
the original version of Tsunami. As noted above, the SX-6
creates excessive call overhead on this code, and thus the
SV1ex compares very well.

10 10

8 8

6 6

4 4

2 2

0 0

S
X

-6
 S

pe
ed

up

SV1ex-1p SV1ex-4p 4p 4p-MPI

Comparison

 Tsunami (mod.)
 Tsunami (orig.)
 ROMS (full phys.)
 ROMS (idealized)
 FLAPW
 RIPPLE
 CICE
 CICE (MPI)

Figure 5: SX-6 wall-clock speedup

The second metric, “SV1ex-4p,” shows the speedup
going from 4 SV1ex CPUs to 4 SX-6 CPUs, under
autotasking, auto-parallelization, or OpenMP. The third
metric, labeled “4p” shows the speedup in going from 1 to 4
SX-6 CPUs, using auto-parallelization or OpenMP. The
fourth metric, “4p-MPI” shows speedup going from 1 to 4
SX-6 CPUs under MPI.

Under the shared memory methods, the codes generally
scale worse on the SX-6 than on the SV1ex, and speedup
from 1 to 4 SX-6 CPUs is less than ideal. Two explanations
present themselves, first, that SV1ex autotasking is simply
better than SX-6 auto-parallelization. Second, the
previously mentioned idea that vectorization alone on the
SX-6 extracts most of the low-level parallelism inherent in
these codes, just to keep one of the 8-pipe CPUs busy. The
good speedup of the MPI version of CICE, especially when
compared with the auto-parallelized version of the same
code, suggests that sufficient work exists in this code to be
processed efficiently in parallel, but that on the SX-6, the
programmer must extract it explicitly, at a larger granularity
than that available to the compiler.

Subjective Measures
This paper is largely a series of case-studies, and thus it

seems appropriate to conclude with some subjective
comments by the users themselves.

Jim Long reports that the SX-6 is “really nice”, and he
wishes he had a single-CPU desk side server of his own.
Kate Hedstrom reports that she likes the picky compiler and
the information provided by F_PROGINF=DETAIL, and
adds: “I thought it was interesting how many options are
controlled by environment variables. I didn't use it enough
to decide if I liked that, though.” The author appreciates the
extensive documentation, access to detailed compiler
options, performance, and cross-compilers.

References
[1]: Halting (Or Not) on Numerical Exceptions, G. Robinson, ARSC, ARSC

H P C U s e r s N e w s l e t t e r ,
http://www.arsc.edu/support/news/HPCnews.shtml, issue 264, Feb 21,
2003

[2]: Douglas B. Kothe, Raymond C. Mjolsness, Martin D. Torrey, "RIPPLE:
A Computer Program for Incompressible Flows with Free Surfaces”,
Los Alamos National Laboratory, LA-12007-MS, April 1991.

[3]: SV1ex Memory Upgrade Gives Greatest Boost to User Performance, T.
Baring, ARSC, Proceedings of the Cray User Group, May 2002

Acknowledgements

Jacqui Warren (Cray Inc.), Claudia David (Cray Inc.), John
Metzner (Cray Inc.), Enrique Lopez-Pineda (Cray Inc.),
Nick Chepurniy (Cray Inc.), Dave Parks (NEC Solutions
America, Inc.), Elena Suleimani (University of Alaska
Fairbanks, Geophysical Institute), Cathrine Stampfl
(Northwestern University), Wieslaw Maslowski (Naval
Postgraduate School)), Ed Kornkven (ARSC), Tom Logan
(ARSC), Kate Hedstrom (ARSC), Andrew Lee (ARSC)),
Guy Robinson (ARSC), Jim Long (ARSC).

Author

Tom Baring is a Vector Specialist at the Arctic Region
Supercomputing Center, and may be reached at
baring@arsc.edu.

