
CUG 2003 Proceedings 1

Exploring the Effects of Hyper-Threading
on Scientific Applications

Kent F. Milfeld, Chona S. Guiang, Avijit Purkayastha, and
John R. Boisseau, Texas Advanced Computing Center

ABSTRACT: A 3.7 teraflops Cray-Dell Linux cluster based on Intel Xeon processors will be
installed at the Texas Advanced Computing Center early this summer. It will represent a
transition from the T3E line of massively parallel processing systems that served researchers at
The University of Texas. Code migration to an IA-32 microarchitecture will benefit from the
adoption of new performance-enhancing architectural features within existing codes and
algorithms. Intel's Hyper-Threading (HT) Technology is one of the significant performance
improvements within the latest IA-32 microarchitecture. HT provides a low-level, simultaneous
multithreading parallelism directly within the microarchitectural framework of the processor’s
core. It is most effective when it can provide additional work via simultaneous instruction
execution of two threads per processor. The net effect is to offset stalls due to memory and I/O
latencies. This paper will discuss the performance characteristics of HT for scientific
applications.

1. Introduction

In the last decade, the instruction-level parallelism
(ILP) in microprocessor architectures has increased
substantially, particularly in the form of pipelined and
superscalar designs (multiple execution units that can
operate simultaneously). Much deeper pipelines1 in the IA-
32 processors have been engineered to allow the processor
speeds to reach 3GHz and beyond. While these architectural
features boost performance, each new generation of
processors must cope with any lag in relative memory speed
and increased latency.

The new Intel Xeon and Pentium 4 processors have a
hardware feature called Hyper-Threading Technology2,3

(HT) that makes a single processor appear as two logical
processors to the operating system and to user applications.
This technology allows two processes or two threads (e.g.,
MPI tasks or OpenMP threads, respectively) to run
simultaneously on a single processor; hence it is a form of
simultaneous multi-threading (SMT) implemented in
hardware. This means that instructions from each thread or
task can execute concurrently in the core. Here, the term
“threading” refers to the process of streaming instructions,
and does not imply a restriction to execution of programs
coded with threads (OpenMP, Multitasking, Pthreads) in the
programming sense. Multiple streams of instructions from
two different processes, MPI tasks, or OpenMP/PThreads
can execute concurrently.

The motivation for incorporating HT in the chip
architecture comes primarily from the business server
market. In web and database servers, it is common for
processors to spend 30 percent or more of their time idle,
waiting for resources (especially memory and I/O). The
impact of idle time can be offset by overlapping the
execution of multiple threads. One hardware approach is to
build two (or more) cores per chip to execute different
threads, as in the IBM Power4 and future Intel Itanium
architectures. HT is a different approach, designed to
execute two independent instruction streams concurrently in
a single core. In both dual-core and HT simultaneous-
multithreading approaches, the memory components and
paths from the L2 cache to the memory are shared. In dual-
core chips, the L1 caches, the registers, buffers, and the
instruction pipelines are duplicated. In HT, some register
and buffers are replicated (state registers, queues, etc.), but
the instruction pipeline and the execution units are shared.
While this might seem prone to contention and congestion,
there is a performance benefit when instructions from two
different threads can execute simultaneously. This
performance benefit is maximized when threads are using
different instruction units, e.g. , when one thread is
performing only integer arithmetic and the other only
floating point operations.

For HPC systems that use the new IA-32 processors
such as the TACC Cray-Dell cluster, HT capability is built
into the processors and can be turned on or off. In the
commodity server market a large variety of processes stall
on random memory and I/O accesses; therefore, multiple

CUG 2003 Proceedings 2

simultaneous threads on a single processor can provide large
performance gains.

While standard benchmarks (SPECfp, Linpack,
STREAM, etc.) are a reasonable metric for
eva luat ing per formance, benchmark ing
production applications should be in the strategy
for platform evaluation. In addition, application
developers should have an understanding of how
the technology operates at the instruction-set
level (e.g., hyperthreading, multithreading, etc.)
for formulating efficient algorithms.

Section 2 presents an outline of the architectural
features of Hyper-Threading and an operational description
of the technology. Section 3 describes computational
kernels that can be used to characterize a memory
subsystem, as well as measure memory characteristics that
are important to Hyper-Threading (latencies and bandwidth
sharing). The HT results of matrix-multiply operations and
two simple scientific codes are reported in Section 4. In
Section 5 we summarize the results, provide conclusions,
and offer insights to application developers.

2. Hyper-Threading

Architecture
Microprocessor performance has improved over the

years with branch prediction, out-of-order execution and
superscalar (multiple and concurrently operated) execution
units. Because the higher clock speeds of the newer
processors require deeper pipelines, there are more
instructions “in flight”; and cache misses, branch
mispredictions, and interrupts become costly. The
simultaneous multi-threading of Hyper-Threading allows
two threads to execute concurrently in the processor without
context switching (moving one instruction stream aside for
the other). This is accomplished with a minimal amount of
additional circuitry.

Hyper-Threading makes a single processor appear as
two logical processors by having two separate architectural
states, even though the same physical execution resources
are shared. At the application level there are two processors
that can be assigned to processes or threads. Figure 1
illustrates the state/core relationship.

The general-purpose registers, control registers, and the
Advanced Programmable Interrupt Controller (APIC), as
well as some machine state registers have been duplicated to
form the two architectural states. The logical processors
share the branch prediction, execution and cache trace units,
control logic, buses and caches. The circuitry and logic
“along” the instruction pipelines were designed to make
sure one thread can progress forward even though another
may be stalled. This “independent forward progress is
guaranteed by making sure that neither thread can consume

an inhibiting share of the buffering queue entries. Another
design goal was to make sure that a single thread on an HT
processor can run as fast as a thread on a processor without
this capability.

The execution trace cache (TC) is where the decoded
instructions (mops) are stored and retrieved, it has replaced

the L1 instruction cache seen in many other
microarchitectures. Its operation provides a good example
of how the processor pipeline arbitrates between the threads.
Two sets of independent pointers are used to point to the
“next” instruction of each software thread. Every clock
period the thread choice is arbitrated, and any simultaneous
access is granted to one thread and followed by the other. If
one logical processor is stalled, 100% accessibility is given
to the other thread. The TC is 8-way set associative, uses a
least recently used (LRU) replacement policy, and is shared
by both threads. Each entry is tagged with a processor ID.

The Front-end of the pipeline consists of the ITLB
(instruction table lookaside buffer), the prediction logic,
streaming buffers, TC and microcode ROM. The duplicated
and shared components are illustrated in Figure 2, as
described by the Desktop Products Group at Intel Corp4. An
instruction stream from each thread is guaranteed by
reserving one request slot for each thread. The ITLB and
their pointers are replicated; the global history array is
shared, with each entry tagged with the processor ID.
Streaming buffers, as well as the queue before the TC and
the mop queue after the TC, have been duplicated.

The out-of-order execution engine consists of the
allocation, register renaming, scheduling pipe sections and
execution units4. The partitioned (shared) and separate
components are illustrated in Figure 4. The mops from each

thread are alternately fetched from the mop queue, and stalls

on a thread when its resource limit has been met (e.g. store
buffer entries, etc.). A single thread will have allocations
request occurring every cycle. By imposing a limit (mostly
half) on key buffers (126 re-order buffer entries, 128/128
integer and float physical registers an 48/24 load and store
buffer entries) for each thread, fairness is preserved and
deadlocks are prevented. There are two Register Alias
Tables since each thread must keep track of its own state.

After allocation and renaming, the mops are queued into

two duplicated buffers (one for memory loads and stored,
the other for general operations). Next, five schedulers
distribute the mops to the execution units. Up to 6 mops can

be dispatched in one CP. The schedulers determine when
the mops are ready to be executed; that is when the

dependent input register operands are available. Each
scheduler has a buffer queue, and there no distinction made
between thread ownership of the mops. Deadlock is avoided

by limiting the maximum number of queue entries for each

CUG 2003 Proceedings 3

logical processor. The execution is also unaware of logical
processor ownership.

The BIOS must be aware of HT, and provide the kernel
with information about the additional (logical) processor
account. Many vendors are shipping platforms with HT
enabled by default; but it can be disabled easily at boot time
(e.g. using the boot argument noht). HT enabled processors
can be detected by observing the number of CPUs the kernel
sees (e.g., using “cat /proc/cpuinfo” or running top
on cluster systems).

3. Measuring Memory Characteristics

Many scientific and engineering HPC applications are
particularly sensitive to the memory subsystem. While this
was less true years ago because traditional Cray
supercomputers (Y-MP, C90, T90, etc.) provided
extraordinary memory bandwidth to keep functional units
busy, the gap between commodity processor speeds and
memory speeds is large—and growing. Therefore,
applications are increasingly sensitive to memory latency
and bandwidth performance. In this section, we will explore
the impact of HT on memory latency and bandwidth. While
these are early results on a new technology, they provide
insights on how HT will impact the performance of HPC
applications (Section 5).

3.1 Memory Latency
Since HT was designed to allow one process to use the

processor while another process is stalled (waiting for
resources), in particular while waiting on memory or cache
data, it is important to know the relative times of memory
and cache latencies. The worst case of memory latency
impacting code performance is when memory references are
random. In an array (IA) containing N array indices (8-byte
integers) randomly distributed, the timings of the following
loop can be used to report the number of clock periods for
single, uncorrelated cache and memory accesses:

I1 = IA(1)
DO I = 2,N

I2 = IA(I1)
I1 = I2

END DO

Figure 4 shows the measured latencies for array sizes
between 1KB and 2MB on a Dell 2650 dual-processor
server with 2.4 GHz Intel Xeon processors using dual
channels to 200 MHz DDR memory. (This system is used
for all measurements in this paper; the Cray system to be
installed in July 2003 will have faster processors and
memory.) Reads (Single CPU data in figure) from L1 (sizes
up to 8KB) take approximately 3 clock periods (CP) while
reads from L2 (sizes between 8KB and 512KB) take
approximately 18 CP, as show in the figure insert. These
single-processor latencies are characteristics of the
processor since the L1 and L2 caches are on the chip die,

and scale with the processor speed. The latencies for
memory reads are mainly dependent on the components of
the memory subsystem off the chip (northbridge bus speed,
as well as the DIMM memory speed and its CLAS rating).
Approximately 450 CP are required to fetch a data element
from memory.

3.2 Memory Bandwidth
High sustainable memory bandwidth is a desirable
capability of an HPC system. There are many different
benchmarks, such as STREAM5, that can characterize the
memory performance. Here we use a simple memory-read
loop that accesses two different floating point arrays. The
memory-read kernel for our measurements consists of a
single loop with the potential to support two streams
through two independent arrays:

DO I = 1,N
S = S + A(I)
T = T + B(I)

END DO

A minimal but reasonable set of compiler options and
loop structures were explored to derive an optimal
bandwidth across the caches and memory. (High
bandwidths are possible with more elaborate coding, but we
wanted to use memory access structures and compiler
options that would be found in common codes and
makefiles, respectively.) In Figure 5 the memory-read
bandwidth is plotted for transfers between 4KB and 2MB.
The bandwidth from the L2 cache is constant at about 13
GB/sec (~0.7Word/CP) over about 70 percent of it range
(size), and decays to memory speed beyond the “high end”
of the cache size. The bandwidth to memory is fairly
constant beyond 1MB, with an average value of 2.3 GB/sec
(~0.1Word/CP).

3.3 Hyper-Threading and High Latency Memory Accesses
The greatest opportunity for multiple processes to

overlap work in the execution units is when processes are
stalling on memory requests (or I/O). The same memory-
read measurements described above were used with 2, 3 and
4 threads on separate arrays (distributed model) to
determine how Hyper-Threading behaves with a simple loop
that has the highest degree of memory stalling. Figures 4
shows latencies for a single thread on each processor (Dual
CPU curve). As expected, two threads accessing memory
randomly exhibit no contention on separate CPUs in the
cache region, and only 2% higher wait time from memory.

When three processes are executing on the system, two
of the processes share one CPU (using HT) while the third is
executed on the second processor. We will refer to these
processes as LP0 and LP1 (on the first processor, using HT)
and LP2 (on the second processor). Figure 6 shows latency
curves for these ‘logical processors.’ The LP2 curve in the
cache region is identical in form and values to those in

CUG 2003 Proceedings 4

Figure 5; in the memory region there is a 26% increase in
the latency. For the processor executing both LP0 and LP1
using HT, the latency in the memory region is about 33%
larger than in Figure 4. The HT mode has extremely large
latencies in the L1 region (see insert in Figure 1); in the L2
region the latencies are also higher, averaging about 25 CP
compared to 18 for single-process mode, but for the benefit
of two operations instead of one. Also, the effective size of
the L2 cache has been reduced significantly, as shown by
the vertical lines at 128KB and 384KB. Even though the
cache is 512KB, the transition between pure L2 and
memory access is not sharp. In HT mode additional data, as
well as additional code, must be retained in the L2 cache.

Execution of four tasks (processes) on a dual-processor
node is the simplest way to configure Hyper-Threading with
MPI applications. Figure 7 shows HT memory latency for 4
threads on independent arrays. (The same behavior is
expected in 4 MPI tasks executing the same loops.) The
four threads display a common behavior. Latencies to
memory are about 700 CP; L2 latencies are about 25CP, and
L1 behavior is sporadic, ranging between values seen for
HT and non-HT (one thread per processor) modes.

The asymptotic values of the memory accesses in
Figures 5 and 7 show that increasing the process count from
two to four, to double the “work” of random accesses,
increase the time by only a factor of 1.5 (460CP per process
for two processes compared to 700CP per logical process
for four processes). Also, the work time on L2 cache
elements only increases by a factor of 1.4 (18CP compared
to ~25CP for 4 threads).

3.4 Hyper-Threading and High Bandwidth Memory
Accesses

Random memory loads and stores provide a large
opportunity for multiple logical processors to overlap
additional memory accesses and operations in the execution
units. On the other end of the memory bandwidth spectrum,
highly optimized bandwidth-limited applications that stream
data into the core usually leave no opportunity for any
additional memory accesses. In the case of the (vector) sum
used in the bandwidth measurement above, just a single
operation (+) is employed on each double precision word
fetched from memory. A 2.4GHz system, streaming in an
array from memory with a bandwidth of 2.4 GB/sec, has
about 7 cycles to perform other arithmetic or logical
operations (discounting any pipeline latencies). Therefore,
even in bandwidth-limited applications, simple loops may
not be using the core units at full capacity. When two
processes execute simultaneously on two processors in a
bus-based dual-processor system, they must share the
bandwidth to memory. [SMP systems such as the AMD
Opteron (HyperTransport), SGI Altix (NUMA), and IBM
Power4 (Distributed Switch) don’t follow this rule.]

For multiple threads, separate arrays were used in the
memory-read loop for each thread to mimic a distributed

memory application. Figure 8 shows the effect of bandwidth
sharing for two threads (tasks) executing on two processors.
The cache region bandwidths are identical to those of the
single-task executions in Figure 5. This is expected since
each processor has its own cache. The memory access
region shows a drop in performance of 50% (from
approximately 2.2 to 1.1 GB/sec) per processor when two
processors read simultaneously. This is also expected since
the bus is shared; the total sustained memory bandwidth is
essentially ‘conserved.’

For 3 and 4 threads executing on the two physical
processors (using HT), the aggregate memory access
bandwidth drops by 10% (2.2 to 2.0 GB/sec) and 23% (2.2
to 1.7GB/sec) as shown in Figure 9 and Figure 10,
compared to only two threads executing on the two
processors (Figure 5). Both figures also reveal that cache
access bandwidths per process have dropped, but the
aggregate bandwidth of the four logical processes has
increased to 14.8GB/sec from 12.8 for non-HT (one process
per processor) execution, a 16% performance boost.

A comparison of cache regions in Figures 5 and 10
reveals that dual-process executions effectively reduce the
cache available to each process. The onset of pure cache
access has shifted from 240KB in non-HT mode compared
to 160KB in HT mode.

If globally visible arrays are used in the memory-read
loop (i.e., shared memory model), the memory performance
is quite different from the distributed model with separate
arrays described above. The performance of this shared-
memory sum in HT mode, on two processors, is shown in
Figure 11. The bandwidth per process at the largest array
size is 910 MB/sec. At first, this appears incorrect: the sum
of the four measured bandwidths is 3.6 GB/s, which is
greater than the theoretical peak bandwidth (3.2 GB/s).
However, in a shared memory model executing in HT mode,
a memory request that is satisfied by one task is available to
the other task “free”; the data lines come at a cost of “two
for one” if the tasks are synchronized. The synchronization
must keep the accesses close enough, in time, so that the
second process fulfils its request from cache. At 1.1
GB/sec, it only takes about 500 microseconds to fill up a
512KB cache. In our timing routines, a barrier at the
beginning of each timed loop forces the loops to begin
within 50 (often 10) microseconds and maintain “cache
synchronization” throughout the execution of the loop. The
insert in Figure 11 reveals that the effective cache size has
been decreased, relative to non-HT execution, as expected.
However, the effective cache size in HT mode execution of
the shared-memory model is larger than for the distributed-
memory model (Figure 10). The decrease in the effective
per-process cache size can be attributed to the non-perfect
synchronization and extra code (text) used in the 2nd task.

CUG 2003 Proceedings 5

4. Hyper-Threading Performance

Hyper-Threading was developed by Intel to help
improve the performance of applications. However, the
primary impetus was for increased performance in
commercial server applications, which usually execute
serially and have very different characteristics compared to
HPC applications. The results in the previous section can be
used to develop insights into the performance of HPC
applications, but we also present a few early results from
simple scientific applications to bolster these insights.

4.1 Matrix Multiply
The BLAS library routines, instead of hand-coded

loops, are often used in compute-intensive applications to
perform basic linear algebra operations. The matrix-matrix
multiply routine, DGEMM, is common in many matrix
transformations. It is therefore important to measure the
benefits of HT on this routine.

Some applications work on a single matrix operation
among all the processors, using a shared-memory parallel
versions of DGEMM. Figure 12 shows the DGEMM
scaling for the Intel MKL 5.1 DGEMM routine throughout a
range of matrix sizes, for one to four threads on our dual-
processor node. For matrices of order 10 to 1000 the
scaling is consistent. All the curves approach an asymptotic
limit for large matrix order. The floating point
performances for one and two processes are 3.2 Gflops and
5.7 Gflops, respectively, for order 1000. However, the three
and four process curves only reach 4.7 Gflops. The scaling
from one to two processes is 1.75; the scaling from one
process to three or four processes is only 1.5.

4.2 Molecular Dynamics
Molecular dynamics type calculations are often used to

model the evolution of proteins, DNA, and other
macromolecular structures in a variety of chemical
environments. To evaluate the effects of HT on this genre
of compute-intensive calculations, the dynamics of a 256-
particle argon lattice was calculated for one picosecond,
using a Verlet algorithm to advance the atomic positions and
velocities. The code was parallelized using OpenMP. Table
1 shows the times for 1-4 threads on our dual-processor
system. Even with excellent scaling to two threads, HT
provides an additional 12% benefit in scaled performance
when four threads are deployed.

Threads: 1 2 3 (HT) 4 (HT)
Time (sec) 7.95 4.06 3.89 3.63
Scaling 1 1.96 2.04 2.19

Table 1: MD performance for serial, dual-processor, and HT
execution.

4.3 Lithography
Lithographic modeling simulates the behavior of

various stages of the lithographic process, such as the
photoresist development, using a set of physical process
parameters and a set of descriptive models. A modeling
program6 developed at The University of Texas uses Monte
Carlo methods and is parallelized with OpenMP. After 107

Monte Carlo iterations, each thread outputs the lattice
configuration and various Monte Carlo statistics to disk. HT
improvements are reported in Table 2.

Threads: 1 2 3 (HT) 4 (HT)
Time (sec) 19.9 15.7 13.1 11.5
Scaling 1 1.27 1.52 1.73

Table 2: Monte Carlo lithography simulation times and
scaling for serial, dual-processor, and HT execution.

The scaling from one to two processors is not as large
as for the MD code. However, significant performance
enhancement is achieved using HT—more than for the MD
code. The incremental gains with each additional thread are
nearly linear. Adding two HT threads provides a
performance boost of 36% over the non-HT execution of
two threads.

5. Conclusions and Insights

This work represents very early results, since the final
system has not been installed by Cray and even the test and
evaluation nodes have not been available and operational for
long. However, the simple latency and bandwidth
measurements conducted can reveal the parameter space for
evaluating the performance enhancement of HT on HPC
codes. As memory latencies increase, the potential benefit
of HT increases as well. In Section 3 we see that
applications characterized by random memory access (e.g.,
employ gather/scatter operations) can overlap their latencies
and have the potential for up to 40% increase in
performance with HT if execution units are not
oversubscribed. This is not unexpected, when considering
that HT was designed to benefit server workloads of web or
database applications consisting of many random memory
references. This technology can also have a positive impact
in HPC codes that solve sparse linear algebra problems.

However, HPC applications that use a distributed
memory model and also stream data from memory can
experience a significant degradation in performance with
HT. The results of Section 3 show a degradation up to
approximately 25% in memory bandwidth according to our
distributed memory bandwidth measurements. This is
disturbing, since many HPC applications stream data from
memory and most HPC applications—especially those
likely to run on Xeon processors—are coded using MPI (or
some other distributed programming technique).

CUG 2003 Proceedings 6

The results in Section 3 relevant to a shared memory
model imply positive impact, however. If the memory
accesses can be shared in cache by using shared-memory
programming (e.g., OpenMP), there can be a benefit of as
much as 60% in memory read performance, especially for
applications that need to share a sizeable fraction of the data
while also accessing disparate sections of memory. One
should keep in mind the additional threads made possible
using HT must share the cache, so the effective cache size
per thread is decreased. Nevertheless, memory-bound
algorithms that use shared data can benefit from the
additional threads of HT, provided the sharing is
synchronized to access the data by the alternate thread once
it is in cache and the code is not heavily cache-optimized
already.

The preliminary application results demonstrate a range
of possible performance impacts. The highly optimized
DGEMM matrix multiply routine degrades by almost 20%
for large matrices when one or two additional HT threads
are applied. This routine is coded for shared memory, but
has been extensively cache-optimized. It is likely that the
reduction in effective cache offsets the benefit of using
shared data. The MD code, which was coded with OpenMP
but in a style which mimics MPI-type parallelism, sees
about 12% performance improvements due to HT. This is
most likely due to sharing of data again, but now the code is
not heavily cache-optimized. Finally, the lithography code
sees significant performance enhancement—73%--with HT.
This code benefits quite well from HT because it has many
random memory references and performs a significant
amount of I/O. I/O stalls can be more severe than memory
stalls; though we did not explore the impact of HT on I/O
intensive codes, it is not surprising that the 60% potential
improvement for random memory accesses would be
exceeded if there were also significant I/O operations.

In general, compute- or memory-bound applications
may not benefit from HT; however, applications that have
memory or I/O stalls, and are not extreme in the use of
cache/execution units or in memory streaming, can benefit
from the Hyper-Threading Technology. We look forward to
exploring this further when the large Cray-Dell cluster is
installed in July 2003. Future work will include more
detailed analysis of HT impact on scientific algorithms and
the benefits to I/O-bound applications.

Acknowledgments

The authors would like to thank their colleagues at
TACC and in the HPCC Group at Dell for sharing their
insights, expertise, and wisdom on Hyper-Threading7.

References

1 . Increasing Processor Performance, by Implementing
Deeper Pipelines, Eric Sprangle & Doug Carmean,

White Paper, Pentium Processor Architecture Group,
Intel Corporation (IEEE 2002)

2. http://www.intel.com/technology/hyperthread/index.ht
m

3 . Intel OpenMP C++/Fortran Compiler for Hyper-
Threading Technology: Implementation and
Performance, Xinmin Tian, Aart Bik, Milind Girkar,
Paul Grey, Hideki Saito, Ernesto Su, White Paper,
http://developer.intel.com/

4 . Hyper-ThreadingTechnology Architecture and
Microarchitecture, Deborah T. Marr, Frank Binns,
David L. Hill, Glenn Hinton, David A. Koufaty, J. Alan
Mil ler , Michael Upton, Whi te Paper ,
http://developer.intel.com/

5. STREAM benchmarks, www.cs.virginia.edu/stream
6. http://willson.cm.utexas.edu/Research/Sub_Files/Resist

_Modeling/collaborations.htm
7. A Study of Hyper-Threading in High-Performance

Computing Clusters, Tau Long, Rizwan Ali, Jenwei
Hsieh, and Chris topher Stanton. –
www.dell.com/powersolutions

About the Authors

Drs. Kent Milfeld, Chona Guiang, and Avijit
Purkayastha are staff members in the HPC Group at TACC.
Dr. John (“Jay”) R. Boisseau is the manager of the HPC
group and the director of TACC. The authors have many
years of experience in HPC, in particular using Cray
supercomputing systems. All of the authors can be reached
at: Texas Advanced Computing Center, CMS 1.154 / PRC
(R8700), 10100 Burnet Rd., Austin TX 78758-4497 U.S.A.;
or U.S. phone number (512) 475-9411. Dr. Milfeld can be
reached by e-mail at milfeld@tacc.utexas.edu .

