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TACC Linux Cluster

3.7 TFLOPS Cray-DeII Machine (to be installed in July)

300 Node Linux Cluster
— CrayRx (SDSC Rocks + Cray System Admin)
— Dell Service

Dell 1750 Xeon Dual-Processor Nodes

3.0GHz processors
dual channel 266MHz DDRAM (1.0GB/cpu)

I\/Iyrinet CLOS Configuration (2Gb/sec switch, “D” adapters)
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Node

Dell PowerEdge 2650 / 1750

Processors: Two 3.0 GHz Intel® Xeon Processors

Chipset: ServerWorks Grand Champ LE chipset

Memory: 2GB dual channel (266 MHz DDR SDRAM)
FSB: 533 MHz (Front Side Bus)
Cache: 512KB L2 Advanced Transfer Cache
Disk: Dual-channel integrated Ultra3 (Ultral60)
SCSI| Adaptec® AIC-7899 (160Mb/s)

controller
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Hyper-Threading Technology
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Hyper-Threading Technology

Hyper-Threading is an implementation of an architectural
technique called Simultaneous MultiThreading (SMT)

Exploits Instruction Level Parallelism on a Single CPU
Why? Comm. Server Workload efficiency is about 67%

Performance Benefits from “independent” processes/threads
— Any time there is a stall for resources on a thread
— Any time disparate operations are used

— Commercial:
Software (Algorithm & Code Modification)—> Multithreading

— HPC:
Already has large number of parallel applications

What about the SHARING?
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Architecture

* |ntel Xeon
— Seven-way superscalar
— Able to pipeline 128 instructions

* |Intel Solution:
— Efficiency instead of Redundancy
— With only 5% more real estate (die area)

 HT-> 2 Logical processors / CPU

— Share most of the processor resources

— Two processes and/or tasks execute in logical units
concurrently
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Microprocessor Architecture
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Pipeline Depth

Pentium lll processor misprediction pipeline
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+Physical (renaming) Registers: 128 Integer and 128 Floating Point
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Redesigned Pipeline for HT

L2 Access Queue Decode Queue Trace Cache Queue
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Memory Measurements & Application
Scaling with HT

 Memory Characterization for a single processor

— Latency
— Bandwidth

 Memory Characterization for HT

— Worst Use of Memory (non-strided Gather/Scatter)
— Best Use of Memory (sequential access)

* Applications (MxM, MD, LP)
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Memory Latency

 Measuring Latency

11 = IA(L)

DO | = 2,N
12 = IA(I1)
11 =12

END DO
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Memory Latency Measurement

Single and Dual Processor Latency —+ Single CPU
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Bandwidth (with 2 Streams)

* Measuring Bandwidth

DO | = 1,N
S =S + A(l)
T=T+ B()
END DO
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HT Memory Latency Measurement

HyperThreading Latency, 3 tasks on 2 processors
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HT Memory Latency Measurement

HyperThreading Latency, 4 tasks on 2 processors
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4.3GB/sec
2.1GB/sec

North Dell Xeons
2.1GB/sec | Bridge (July, 2003)

System used
In following

3.2GB/sec
1.6GB/sec

North Experimental
1.6GB/sec | Bridge Cluster
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HT Memory Bandwidth Measurement

Memory Read (distributed memory mo
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HT Memory Bandwidth Measurement

Memory Read (distributed memory model)
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HT Memory Bandwidth Measurement
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Parallel Matrix-Matrix Multiply

Single-Matrix Matrix Multiply
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threads
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Molecular Dynamics

Molecular dynamics simulation of a 256 particle argon lattice
One picosecond
Verlet algorithm

Threading 1 Thread 2 Threads 3 Threads 4 Threads
HT HT

Time(sec): 7.95 3.89 3.63
Scaling: 1 2.04 2.19
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Monte Carlo Lithography Simulation

10**7 Monte Carlo iterations

Each thread outputs the lattice configuration and various Monte Carlo
statistics to disk.

Threading 1 Thread 2 Threads 3 Threads 4 Threads
HT HT

Time(sec): 19.9 15.7 13.1 11.5
Scaling: 1 1.27 1.52 1.73
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Conclusions
HT Performance

« Multiple “independent”
Processes/Tasks/Threads are necessary.

« Bandwidth-limited and/or Compute Intensive
codes may see degradation of performance.

* Non-extreme Code may see performance

enhancements
— Cache sharing (synchronization may be required)
— Non-Streaming memory access

— 1/O
— Disparate operations (e.g., integer mult. & float mult.)
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