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TACC Linux ClusterTACC Linux Cluster

•• 3.7 TFLOPS Cray-Dell Machine 3.7 TFLOPS Cray-Dell Machine (to be installed in July)(to be installed in July)

•• 300 Node Linux Cluster300 Node Linux Cluster
–– CrayRxCrayRx (SDSC Rocks + Cray System Admin) (SDSC Rocks + Cray System Admin)

–– Dell ServiceDell Service

•• Dell 1750 Dell 1750 Xeon Dual-ProcessorXeon Dual-Processor Nodes Nodes

•• 3.0GHz processors3.0GHz processors
dual channel 266MHz DDRAM (1.0GB/cpu)dual channel 266MHz DDRAM (1.0GB/cpu)

•• MyrinetMyrinet CLOS configuration  CLOS configuration (2Gb/sec switch, (2Gb/sec switch, ““DD”” adapters) adapters)
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Linux ClusterLinux Cluster

interne
t

interne
t

Switch

Server

P C P C P C P C
PC+

Switch

File
Server

PC+

…

*

*



4TACC
The University of Texas

At Austin

NodeNode

Processors: Two 3.0 GHz Intel®   Xeon Processors
     Chipset: ServerWorks Grand Champ LE chipset
    Memory: 2GB  dual channel (266 MHz DDR SDRAM)

           F S B : 533 MHz  (Front Side Bus)
       Cache: 512KB L2 Advanced Transfer Cache
          Disk: Dual-channel integrated Ultra3 (Ultra160)

SCSI Adaptec®  AIC-7899 (160Mb/s)
controller

Dell PowerEdge 2650 / 1750

2U/1U
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Hyper-Threading TechnologyHyper-Threading Technology
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Hyper-Threading TechnologyHyper-Threading Technology

•• Hyper-Threading is an implementation of an architecturalHyper-Threading is an implementation of an architectural
technique called Simultaneous technique called Simultaneous MultiThreadingMultiThreading (SMT) (SMT)

•• Exploits Instruction Level Parallelism on a Single CPUExploits Instruction Level Parallelism on a Single CPU

•• Why?  Comm. Server Workload efficiency is about 67%Why?  Comm. Server Workload efficiency is about 67%

•• Performance Benefits from Performance Benefits from ““independentindependent””  processes/threadsprocesses/threads

–– Any time there is a stall for resources on a threadAny time there is a stall for resources on a thread

–– Any time disparate operations are usedAny time disparate operations are used

–– Commercial:Commercial:
          Software (Algorithm & Code Modification)          Software (Algorithm & Code Modification)�� Multithreading Multithreading

–– HPC:HPC:
          Already has large number of parallel applications          Already has large number of parallel applications

•• What about the SHARING?What about the SHARING?
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ArchitectureArchitecture
•• Intel XeonIntel Xeon

–– Seven-way superscalarSeven-way superscalar

–– Able to pipeline 128 instructionsAble to pipeline 128 instructions

•• Intel Solution:Intel Solution:
–– Efficiency instead of RedundancyEfficiency instead of Redundancy

–– With only 5% more real estate (die area)With only 5% more real estate (die area)

•• HTHT�� 2 Logical processors / CPU 2 Logical processors / CPU
–– Share most of the processor resourcesShare most of the processor resources

–– Two processes and/or tasks execute in logical unitsTwo processes and/or tasks execute in logical units
concurrentlyconcurrently
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Microprocessor ArchitectureMicroprocessor Architecture
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Pipeline DepthPipeline Depth
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Redesigned Pipeline for HTRedesigned Pipeline for HT
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Memory Measurements & ApplicationMemory Measurements & Application
Scaling with HTScaling with HT

•• Memory Characterization for a single processorMemory Characterization for a single processor
–– LatencyLatency

–– BandwidthBandwidth

•• Memory Characterization for HTMemory Characterization for HT
–– Worst Use of Memory (non-Worst Use of Memory (non-stridedstrided Gather/Scatter) Gather/Scatter)

–– Best Use of Memory (sequential access)Best Use of Memory (sequential access)

•• Applications (Applications (MxMMxM, MD, LP), MD, LP)
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Memory LatencyMemory Latency

•• Measuring LatencyMeasuring Latency

I1 = IA(1)
DO I = 2,N
   I2 = IA(I1)
   I1 = I2
END DO
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Memory Latency MeasurementMemory Latency Measurement

Single and Dual Processor Latency
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Bandwidth (with 2 Streams)Bandwidth (with 2 Streams)

•• Measuring BandwidthMeasuring Bandwidth

DO I = 1,N
   S = S + A(I)
   T = T + B(I)
END DO
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Memory BandwidthMemory Bandwidth

Memory Read
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HT Memory Latency MeasurementHT Memory Latency Measurement
Single and Dual Processor Latency
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HT Memory Latency MeasurementHT Memory Latency Measurement

HyperThreading Latency, 4 tasks on 2 processors
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IntroIntro
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HT Memory Bandwidth MeasurementHT Memory Bandwidth Measurement

Memory Read (distributed memory model)
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HT Memory Bandwidth MeasurementHT Memory Bandwidth Measurement

Memory Read (distributed memory model)
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HT Memory Bandwidth MeasurementHT Memory Bandwidth Measurement

Memory Read (shared memory model)
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Parallel Matrix-Matrix MultiplyParallel Matrix-Matrix Multiply
Single-Matrix Matrix Multiply 
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Molecular DynamicsMolecular Dynamics

2.192.192.042.041.961.9611Scaling:Scaling:

3.633.633.893.894.064.067.957.95Time(sec):Time(sec):

4 Threads4 Threads
HTHT

3 Threads3 Threads
HTHT

2 Threads2 Threads1 Thread1 ThreadThreadingThreading

Molecular dynamics simulation of a 256 particle argon lattice 
One picosecond 
Verlet algorithm 
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Monte Carlo Lithography SimulationMonte Carlo Lithography Simulation

10**7 Monte Carlo iterations
Each thread outputs the lattice configuration and various Monte Carlo 
statistics to disk. 

1.731.731.521.521.271.2711Scaling:Scaling:

11.511.513.113.115.715.719.919.9Time(sec):Time(sec):

4 Threads4 Threads
HTHT

3 Threads3 Threads
HTHT

2 Threads2 Threads1 Thread1 ThreadThreadingThreading
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ConclusionsConclusions
HT PerformanceHT Performance

•• Multiple Multiple ““independentindependent””
Processes/Tasks/Threads are necessary.Processes/Tasks/Threads are necessary.

•• Bandwidth-limited and/or Compute IntensiveBandwidth-limited and/or Compute Intensive
codes may see degradation of performance.codes may see degradation of performance.

•• Non-extreme Code may see performanceNon-extreme Code may see performance
enhancementsenhancements
–– Cache sharing (synchronization may be required)Cache sharing (synchronization may be required)

–– Non-Streaming memory accessNon-Streaming memory access

–– I/OI/O

–– Disparate operations (e.g., integer Disparate operations (e.g., integer multmult. & float . & float multmult.).)


