
CUG 2003 Proceedings 1

Parallel Programming Model Update

Greg Fischer and Charlie Carroll, Cray Inc.

ABSTRACT: This paper will present status for the various compiler-based parallel
programming models on the Cray X1: Co-array Fortran, UPC and OpenMP. Brief
descriptions and motivations for the models will be given. We describe functionality of the
current Cray X1 implementations and our plans for future work. We discuss how the various
parallel models may be combined to achieve the best utilization of the machine. We describe
the gang-scheduling capability on the Cray X1 and its implications for OpenMP applications.
We give some recommendations on when to use SSP mode and MSP mode with OpenMP
applications. Finally, some preliminary OpenMP performance numbers on the Cray X1 are
presented.

1. Introduction

While the Cray X1 offers industry-leading single
processor performance, its full power is realized through
parallel execution of its processors through various parallel
programming models. While MPI continues to be the most
important parallel model at Cray due to its wide popularity
among existing applications and across many different
platforms, several other compiler-based models are offered
by Cray that can give the programmer additional
performance, capability and productivity gains. This paper
will give an update on the status of three of these models on
the Cray X1: Co-array Fortran, UPC and OpenMP.

2. Co-array Fortran and UPC

Co-array Fortran and UPC are distributed memory
programming models implemented via extensions to the
Fortran and C programming languages, respectively. Like
MPI, the user program is replicated as multiple processes,
and these processes perform local computations and
communicate with each other. But whereas MPI processes
communicate by sending messages, Co-array Fortran and
UPC processes communicate by directly reading and writing
arrays that are shared and distributed across the processes.
While not official standards, these languages each have a
community of implementers and users in both industry and
academia that maintain their specifications. [1,2]

Co-array Fortran and UPC offer improved productivity
over message passing models by halving the amount of
communication code, and giving better readability and
reliability by integration with the high-level language. They
can also give improved performance on platforms that
support one-way communication between processes (such
as the Cray X1) by eliminating library routine overhead.

Co-array Fortran is available in the latest release of the
Cray X1 Programming Environment. The implementation is

equivalent in functionality to that offered on the Cray T3E,
and no additional functionality is planned for the 5.0 or 5.1
release of the Programming Environment.

UPC is also available in the latest release of the Cray
X1 Programming Environment. While the current
implementation is a subset of the language, it offers those
features of the language which are of most use to Cray users
and which can be implemented most efficiently by the Cray
compiler.

Nevertheless, for those customers that require the full
UPC language, an implementation is in development and
will be available in Programming Environment 5.1, planned
for Fall 2003. Among the language features which are
planned: support for all shared array types; support for
pointers to all shared array types; support for the upc_forall
statement; support for the upc_global_alloc and upc_free
memory allocation routines; support for intrinsics added in
version 1.1 of the UPC Specification.

Because the full UPC language is so expressive, it is
possible for a programmer to create data types and control
constructs that are inherently difficult for the compiler to
implement efficiently. In order to help the user be aware of
these, the compiler will print caution messages when the
user uses a construct that the compiler was not able to
implement in an “efficient” manner.

3. OpenMP

OpenMP is an industry standard parallel programming
model. At its core is a set of directives that can be applied to
a single-image application to create additional threads of
execution and distribute the work of the application across
those threads. It is a "shared-memory” programming model,
designed for platforms with uniform memory access time
from each processor to any location in memory.

CUG 2003 Proceedings 2

OpenMP will be made available in the 5.1 release of the
Cray X1 Programming Environment, currently planned for
Fall of 2003. The Programming Environment will offer a
complete implementation of OpenMP version 2.0 [3] in the
Fortran, C and C++ programming languages. This will be
the first time that Cray has offered OpenMP in C and C++
on any of its platforms. In addition, it will be the first time
that Cray has supported the complete OpenMP 2.0
specification, most notably the WORKSHARE directive in
Fortran.

4. Node and Hybrid Programming

Since OpenMP is intended for uniform memory access
(UMA) platforms, it is not appropriate for programming a
whole Cray X1, which is a non-uniform access (NUMA)
platform. Nevertheless, OpenMP can play an important role
in better utilizing the capability of the Cray X1.

The Cray X1 implementation of OpenMP is targeted to
the largest component that has uniform memory access: the
node. Thus X1 programmers will be able to program up to 4
MSPs (in MSP mode) or 16 SSPs (in SSP mode) using
OpenMP, applying the power of an entire Cray X1 node to a
single-image application.

Not only can OpenMP be used by itself, but it can also
be used in combination with the distributed memory models
(MPI, SHMEM, Co-arrays, UPC) to add additional
capability and flexibility to those models. This technique is
known by different names, including Multi-level Parallelism
and Hybrid Parallel Programming.

On the Cray X1, an OpenMP program is implemented
on top of POSIX threads (also known as Pthreads),
contained in a single UNICOS process. Thus OpenMP can
be used to bring multiple threads of execution (and thus
multiple Cray X1 processors) to bear on each of the multiple
processes of a distributed memory application. This
technique can be effective for programs with parallelism
which cannot be exploited by compiler vectorization or
multi-streaming. This technique is also particularly effective
for "irregular grid" applications, whose individual processes
have varying amounts of parallel computation to perform.
OpenMP can be used to apply more processors to those
processes with more work to do, and fewer processors to
those processes with less work to do. This results in better
load balancing across an application, and thus better
machine utilization and efficiency.

5. Gang Scheduling

The new gang scheduling feature for processor
scheduling on the Cray X1 developed for distributed
memory users also offers OpenMP users a capability
previously not available on Cray parallel-vector platforms.
By invoking the aprun command with the “-d n” option, the

user assures that each OpenMP process has n processors
available to its threads whenever it is scheduled, even in
interactive sessions. This guarantees that the threads of the
OpenMP application will truly run in parallel, reducing its
wall-clock time. On previous Cray parallel-vector platforms,
the threads of an OpenMP application were scheduled like
any other, as processors became available, based on priority.
This meant that parallel execution of threads within an
OpenMP application was only possible, but was not
guaranteed.

Guaranteed reduced wall-clock time, however, comes
with a price. Even the most parallel of OpenMP applications
have periods of serial execution, where only one thread is
executing. During these periods, only one processor is
utilized, and the others simply idle, waiting for the next
parallel region to be started. Users must evaluate the
additional cost of gang scheduling and weigh it against the
advantage of improved wall-clock time. Users can get
processor scheduling similar to that on the previous Cray
parallel-vector platforms by not specifying the –d option to
aprun.

6. MSP vs. SSP

With the Cray X1 Programming Environment release
5.0 (available in Summer 2003), users will first be able to
program using an SSP as a processor, rather than an MSP.
This capability is known as "SSP mode". Thus users must
decide whether to use SSP mode or MSP mode to execute
their OpenMP program.

One significant element to consider is E-cache
performance. The E-cache is the cache shared between the
four SSPs of an MSP. Since the E-cache is only a two-way
cache, care must be taken to minimize cache conflict
between the four SSPs.

One of the most effective ways to minimize cache
conflict between SSPs is to have them executing different
iterations of the same loop in the same function. This
usually means the SSPs are referencing different areas of the
same arrays, reducing the chance of conflict in the cache.
This cooperation between SSPs is typically achieved with
the multi-streaming capability of the compiler. It can,
however,
also be achieved with OpenMP using the "DO" or "for" loop
distribution constructs, in Fortran and C, respectively.

Another factor to consider is the style of parallel
programming used by the OpenMP application. If the
program is parallelized at the loop-level, using the OpenMP
"DO" or "for" constructs (sometimes referred to as Fine-
grain Parallelism), cache cooperation between processors is
already achieved. In this case, the user may consider
executing the program in SSP mode.

However, if the OpenMP program is parallelized across
functions that work on "threadprivate" data (sometimes

CUG 2003 Proceedings 3

referred to as Coarse-grain, or Functional Parallelism), no
cache cooperation is guaranteed between processors. In this
case, the user may wish to consider executing in MSP mode
in order to use multi-streaming to achieve cache cooperation
between SSPs.

7. OpenMP Performance

At the time of this writing, OpenMP is available inside
Cray for testing purposes. We have performed some
preliminary timing tests. The data presented here should be
viewed in this context—preliminary performance figures
that can be expected to change, generally for the better but
not always, as we finalize OpenMP. All results were
obtained in SSP mode.

7.1 Overhead

J.M. Bull of the University of Edinburgh has developed
a methodology to measure OpenMP overhead. We have
used it to measure our implementation of OpenMP on the
Cray X1. A full explanation of Bull’s methodology can be
found at [4]. A brief explanation is given here.

Consider a kernel of work that executes in time Ts. If
that work is spread across p threads, the theoretical
minimum time is Ts/p. The actual time will be something
greater; let’s call that Tp. The difference between these two,
T p and T s / p, measures the overhead introduced by
OpenMP.

Overhead = Tp –Ts/p

Here is the same idea illustrated with code examples.
The reference code looks like this.

do j=1,numiter
call delay(delaylength)

end do

Here is the same work done on each of p threads. The
difference between the times to execute these codes is the
OpenMP overhead.

!$OMP PARALLEL
do j=1,numiter
!$OMP DO

do k=1,omp_get_num_threads()
call delay(delaylength)

end do
!$OMP END DO
end do
!$OMP END PARALLEL

The table below shows the overhead measurements for
Parallel Do with varying numbers of threads.

Number of SSPs Overhead
1 5.87 microseconds
2 5.93 microseconds
4 9.28 microseconds
8 15.9 microseconds

These numbers demonstrate reasonable overhead for
the Cray X1, and reasonable scaling as the thread count
increases.

The table below shows the overhead measurements for
different chunk sizes with a Dynamic scheduling algorithm.
In all cases, loops are for 1,024 iterations and with eight
OpenMP threads (in SSP mode on the Cray X1). Results are
shown for both the Cray X1 and Cray SV1 systems.

Chunk Size X1 Overhead SV1 Overhead
1 161 us 690 us
2 88 us 344 us
4 60 us 252 us
8 43 us 174 us

16 32 us 128 us
32 25 us 107 us
64 25 us 99 us

128 22 us 95 us

Overhead decreases as the chunk size increases, with
the curve getting fairly flat at a chunk size of 32 or greater.
Cray X1 OpenMP overhead is about 25% of the Cray SV1
OpenMP overhead.

7.2 NAS Parallel Benchmarks

We also measured OpenMP’s ability to scale by
applying it to codes that are known to scale well. We
selected two kernels from the NAS Parallel Benchmarks.

The first chart shows results for the CG kernel. The
speedup increases nearly in synch with the thread count.

SSP Count Speedup
1 1.0
2 2.0x
4 3.9x
8 7.9x

16 15.5x

MSP performance on CG, through compiler multi-
streaming, was about 40% better than the four-thread
OpenMP performance. To put it another way, MSP
performance is equivalent to about 5.6 OpenMP threads.
This might be expected due to the better synchronization

CUG 2003 Proceedings 4

available to an MSP, plus the fact that an MSP utilizes a
static distribution mechanism, which is faster than the
dynamic mechanism used by OpenMP for this code. In
addition, since the multi-streaming is an automatic form of
parallelism, it can make some additional optimizations
regarding placement of parallelism that are not available to
the fixed source OpenMP version.

Here is a similar chart for the MG kernel:

SSP Count Speedup
1 1.0
2 1.9 x
4 3.1x
8 7.0x

16 12.3x

This kernel does scale quite as spectacularly as the CG
kernel, but it’s still quite respectable.

8. Conclusion

Cray X1 users will continue to see additional support
for compiler-based parallel programming models over the
coming year. Full UPC support will be available in the Fall
2003 for those who wish to take advantage of its
expressiveness. OpenMP will also be available in this time
frame, giving programmers the ability to apply a full Cray
X1 node to a single-image application, as well as enabling
Hybrid Parallel programming with the distributed memory
models. Initial OpenMP performance results show
reasonable overhead and promising scalability. The new
gang scheduling capability on the X1 can improve wall-
clock time for OpenMP applications at some additional cost.
Finally, the new SSP mode gives users more flexibility in
choosing the most efficient method for running OpenMP
applications.

References

[1]http://www.co-array.org
[2]http://upc.gwu.edu
[3]http://www.openmp.org
[4]http://www.epcc.ed.ac.uk/computing/research_activities/
openmpbench/

Acknowledgments

The authors wish to thank David Nault, Vince Graziano
and Don Ferry of Cray Inc. for their assistance in gathering
performance data for this paper.

About the Authors

Greg Fischer is a member of the technical staff in the
Compiler Optimization and Code Generation section of the
Programming Environment group at Cray Inc. He can be
reached at Cray Inc., 1340 Mendota Heights Rd., Mendota
Heights, MN 55120, E-Mail: gsf@cray.com .

Charlie Carroll is the section leader of the Compiler
Optimization and Code Generation section of the
Programming Environment group at Cray Inc. He can be
reached at Cray Inc., 1340 Mendota Heights Rd., Mendota
Heights, MN 55120, E-Mail: charliec@cray.com.

