
1

Finite Element Analysis on the Cray MTA-2

Jon Gibson and Mike Pettipher, CSAR, University of
Manchester

ABSTRACT: This paper explains how the Cray MTA-2 might be a good platform on which
to run an existing suite of finite element codes. We discuss the issues involved and compare
the performance on the MTA with that on an SGI Origin 3800.

1. Introduction

The Cray MTA-2

The Cray MTA-2 (Multi-Threaded Architecture) uses
multiple lightweight threads on each processor as a novel
way to bypass the increasing problem of memory latency on
high performance architectures. It can have up to 128 of
these threads on each of 16 to 256 processors (noting that
the largest machine currently in existence is the 40
processor one at NRL). By switching between the active
threads at each clock cycle, the processor is kept busy and
the time taken to access memory is not wasted. This avoids
the need for caches and the multi-level memory hierarchy
normally associated with high performance architectures. In
fact, the machine provides a scalable uniform access to a
global shared memory, at a bandwidth of 2.4GB/s and with
an impressive 4GB of memory per processor. Another
desirable feature of the machine is that it is “easy to
program”. The parallelism is mainly loop-based and is
programmed using directives (in a similar way to OpenMP)
or, where possible, implemented automatically by the
compiler. Additionally, the MTA's uniform memory access
simplifies the task of the programmer, since issues such as
data locality and optimal cache usage are not relevant.

The Finite Element Codes

Over a number of years, Professor Ian Smith of the
University of Manchester has developed a suite of template
finite element codes. They are serial Fortran 90 codes
written so as to be easily adaptable by a user to suit their
individual requirements. They use an element by element
(EBE) method, employing iterative solvers. The codes are
widely used by engineers worldwide and an earlier version
of the codes was used as the basis of the NAG finite element
library. They cover all the usual fields where FEA is
employed, e.g. material behaviour (elastic-plastic); fluid and
heat flow; eigenvalue problems; forced vibrations; and
coupled physical processes such as magnetohydrodynamics.

More recently, a lot of work has been done to provide
an equivalent set of templates which can be used for parallel
FEA, using MPI. The idea is to maintain as much of the
structure and syntax as possible from the serial code and to
hide away all the parallel MPI directives in library routines.
This is to allow users with minimal knowledge of parallel
programming to adapt the parallel code templates, in the
same way as the serial ones, to their own particular
problems.

The element by element approach used in all of these
codes leads to a lot of inherent parallelism. All of the codes
are completely dominated by a number of loops over the
elements, all of which can be parallelized. For the purposes
of this paper, we will consider one routine in particular,
p60pcs, which calculates the 3D strain of an elastic-plastic
solid. The time in this program is dominated by the pre-
conditioned conjugate gradient (PCG) solver, which is itself
based around a matrix-vector computation. This consists of
a matrix-matrix multiplication, preceded by a gather and
followed by a scatter, where data is distributed as required.
These gather and scatter sections require a significant
amount of communication. We wrote our own routines
which packed and sent the data once for all gathers and once
for all scatters, giving a small number of large messages. It
took a substantial amount of time to develop this code.
Table 1 shows the timings we obtained for this MPI
implementation on a Cray T3E.

Processors 8 512

PCG elapsed time 104.9 3.1

PCG speedup 1.0 33.8 (out of 64)

PCG % peak 22% 12%

Table 1: Timings of Elastic-Plastic Analysis Code on the
Cray T3E.

As a second example, we will quickly consider a
magnetohydrodynamics code. This has been discretised
using the finite element (EBE) method into 20-node
quadrilateral bricks. It contains a Navier-Stokes solver and

2

reaches an iterative solution using a BiCGStab(l) algorithm.
This is necessary to deal with the unsymmetrical stiffness
matrix. The stiffness matrix and is different for each
element, resulting in poor cache re-use and hence, poor
performance. By finding the common structure in the
stiffness matrices and recoding, it is possible to improve the
use of cache and so the overall performance. The figure
below shows the percentage of peak performance obtained
with 256 processors on an SGI Origin 3800.

There are therefore two major factors affecting the
performance of the MPI implementations of these codes.
Firstly, the time for the gather and scatter is significant,
although this does not affect the scaling. Secondly, special
coding is required to avoid performance problems due to
cache re-use in matrix-vector operations. In other words,
good performance has been achieved after a significant
amount of work was spent on various parts of the code. The
question we were asking was could the Cray MTA-2 do any
better?

2. Finite Element Codes on the MTA-2

There were a number of reasons why we expected the
MTA-2 to show an improved performance over other HPC
machines. Its flat shared memory should remove the cost of
a distributed memory gather and significantly reduce that of
the scatter. Since memory latency is hidden by the use of
multiple threads on the MTA, efficiency of cache usage is
not an issue (in fact, it doesn’t even have one!). Perhaps the
main advantage of the MTA here is the ease of
programming. Very few changes are required to the serial
codes, only a few OpenMP style directives, and a fair
amount of the code can be automatically parallelized by the
compiler. This simplicity is ideal for our situation, where
there’s a whole suite of codes to be edited for individual
purposes by a large number (for the serial codes anyway) of
engineers/scientists with very little parallel coding
knowledge.

We will compare the timings of the aforementioned
p60pcs elastic-plastic code (running 64,000 elements) on the
MTA-2 with those of MPI and OpenMP codes on an SGI
Origin 3800 (located here at CSAR, Manchester). Our
results are only for one, two and four processor runs due to
the limited sizes of the MTA’s available to us. Table 2

shows the results with the Origin and Table 3, those of the
MTA. All timings are in seconds.

Processors 1 2 4

Conj Grad
loop

787.1 393.5 204.7

Matrix mult 378.6 192.2 98.0

Gather/scat
ter

254.2 132.2 72.0

Table 2: p60pcs, MPI version on the Origin 3800

Processors 1 2 4

Conj Grad
loop

841.3 429.8 234.1

Matrix mult 664.5 334.7 167.7

Gather/scat
ter

 76.7 43.7 33.8

Table 3: p60pcs on the MTA-2

It is important to note that the clock speed on the Origin
is 400MHz, double that of the MTA. This explains its better
performance on the matrix multiply. However, despite this,
the MTA gives a significant performance improvement with
the gather and scatter, leading to comparable times for the
overall conjugate gradient loop. Another interesting
comparison to make is the coding time required, given that
on the MTA it took hours rather than months for the MPI
version. This should not be the case for an OpenMP version
though, where the coding style is very similar. Table 4 gives
the timings for the OpenMP version of the same code on the
Origin 3800.

Processors 1 2 4

Conj Grad
loop

678.4 473.2 359.0

Matrix mult 381.6 200.2 103.4

Gather/scat
ter

142.2 110.5 100.4

Table 4: p60pcs, OpenMP version on the Origin 3800

The gather and scatter performs badly enough for the MTA
to be running the faster of the two by the time the jobs reach
four processors in size.

The scaling of the code on the MTA is clearly not
perfect, as illustrated in the figure below. It is the
gather/scatter part that is scaling so poorly. Looking in a bit
more detail, the gather can be seen as insignificant, taking
about 0.02 seconds in all cases. A little investigation showed
that the scatter involves unnecessary multiple updates to
specific locations and the resulting memory contention leads

0

10

20

30

40

50

0 50 100 150 200 250 300

Number of Processors

%
 P

ea
k

P
er

fo
rm

an
ce

3

to the poor scaling. This can be fixed with a simple test,
although at the expense of an additional overhead. A better
solution without the overhead is being developed. The
timings of this “improved” version are shown in Table 5.

Processors 1 2 4

Conj Grad
loop

881.2 442.7 227.9

Matrix mult 677.5 338.7 171.9

Gather/scat
ter

102.4 51.4 26.2

Table 5: p60pcs on the MTA-2 with scaling scatter

Clearly, the gather/scatter is now scaling well.

Summary

We have seen that the performance of these codes on
the MTA is comparable to MPI and better than OpenMP on
a machine with double the clock speed. This can be done
with much less coding time, especially when compared to
the MPI code. Since the code used is part of a suite of
similar FEA codes, widely used throughout the world, their
potential applicability is enormous. One of our objectives is
to encourage engineers who are not currently using HPC
systems to do so. The MTA offers a simple route to HPC for
engineers using this suite of FEA codes.

We intend to compare performances for a number of
these codes on the MTA and to report more fully on our
findings at a later date.

Acknowledgements

The author would like to thank Simon Kahan and Jim
Maltby of Cray Inc, Seattle for their valuable help on the
project and to Cray Inc itself for giving us access to their
MTA’s.

About the Authors

Jon Gibson is a high performance computing consultant
at CSAR, Manchester Computing, University of
Manchester, U.K. E-mail: jon.gibson@man.ac.uk

Mike Pettipher is the manager of the HPC services
group at Manchester Computing, University of Manchester,
U.K. E-mail: m.pettipher@man.ac.uk

