
CUG SUMMIT 2003 Proceedings 1

Cray X1 MPI Implementation

Jeff Nicholson and Tom Goozen, Cray Inc.

ABSTRACT: For the MPI implementation on the Cray X1 architecture, a number of
changes had to be made to the MPI algorithms ported from SGI in 2000. These changes were
required to take full advantage of the high bandwidth between the Cray X1 processors:
several key routines were completely rewritten to take advantage of the Remote Translation
Table (RTT) memory access feature; the mechanism used to do basic sends and receives was
changed to a "hot path" to reduce latencies; and a new algorithm to reduce barrier timings
was written that rivals the T3E hardware barrier. These changes, among others discussed
here, have resulted in the very fast, very efficient movement of large amounts of data between
processors.

1. Introduction

It became clear after Cray ported MPI from SGI’s
implementation in 2000 that the SGI MPI algorithms could
not accommodate the high bandwidth between processors in
the Cray X1 system. This is in part because the SGI MPI
implementation was written to be cluster-aware more so than
for performance. Our task, therefore, was to streamline,
simplify, and in some cases replace the SGI algorithms and
routines with an eye toward optimized performance. A
number of subroutines were deleted, and smaller routines
were replaced with inlined code and macros. Cluster-aware
code was removed and replaced with memory access
schemes – these allowed us to take advantage of both the
Cray X1 system’s high memory bandwidth and its vector
gather/scatter hardware. In addition to these changes,
Fortran bindings were incorporated in the same source files
as C routines, thereby eliminating additional calling
overhead.

2. Cray’s Commitment to MPI

A large number of Cray customers run parallel
processing applications developed under MPI, the Message
Passing Interface programming model. MPI has been
implemented across the Cray SV1, SV1ex, Cray T3E
systems, and now the Cray X1 system, to take advantage of
each platform’s unique processing characteristics. The MPI
implementation for the Cray X1 complies fully with the MPI
1.2 Standard and selected portions of the MPI-2 Standard.

MPI 1.2 and MPI-2 Support
The full functionality of the MPI 1.2 standard has been

ported to the Cray X1. Several of its core routines,
mentioned later in this paper, include new algorithms that
replace previous versions. These new algorithms take
advantage of the hardware performance characteristics of the
Cray X1. As we implemented these algorithms, we also
removed areas of code that did not support our single system
image (SSI) strategy for the Cray X1.

The MPI-2 features that were ported include Remote

Memory Access (RMA – also called “one-sided”) and MPI-
I/O. MPI-I/O was ported from ROMIO version 1.2.4.
Several of the same macros and inlined routines that were
implemented in the core group of MPI routines have been
implemented in the MPI-I/O routines as well to provide
more performance enhancements.

The extended MPI-2 collective operations will be

ported and available in a future release of Cray MPT.

MPI-2 Porting Exceptions
Due to a limitation in the operating system, the MPI-2

Dynamic Process Management (DPM) feature was not
ported and the Generalized Requests functionality has not
been ported to the Cray X1.

Mixing Programming Models
In addition to MPI, we have implemented the following

parallel programming models: SHMEM, Co-Array Fortran
(CAF), Unified Parallel C (UPC), and the soon to be
available OpenMP. To date, we have successfully mixed
MPI with CAF/UPC and with OpenMP. Applications
developers will be interested to know that one-way message

CUG SUMMIT 2003 Proceedings 2

passing in Co-Array Fortran and Unified Parallel C takes
advantage of our compilers and low calling sequence
overhead by doing data puts or gets from other processes
within their parallel application program. These models do
not require the data type conversion overhead needed in
MPI.

3. Hardware Advantages

Single System Image
Early in the development cycle of the Cray X1 MPI

implementation, we determined that to get the best
performance, and thereby use the full hardware resources of
the Cray X1, we would restrict MPI to a Single System
Image (SSI) model. We decided this because, under normal
operations, the scheduling scheme dedicates processor and
memory resources to the application, but these resources are
not relinquished until the application terminates. This meant
that, had we decided to support a clustered implementation,
valuable processor and memory resources would sit idle,
waiting for the relatively slow network communication to
complete.

Distributed Memory Architecture
The Cray X1 system is a NUMA architecture. With

NUMA, memory is globally accessible, but it can be
accessed faster locally than it can be accessed remotely. To
help balance the access times to remote memory, a new
facility, the Remote Translation Table (RTT), was
introduced. The RTT allows parallel programming models
to quickly determine remote memory addresses by managing
the node and memory address fields and issuing a fetch or
store to that address. The address is a 64-bit word, its
upper-most bits reserved for the NODE-ID and other
address information. Using the RTT removed the need for
the regular Translation table code.

SSP and MSP modes (available in the PE 5.0 release)
To accommodate the range of demands of parallel

programming applications, the Cray X1 system uses two
processing modes: Single Streamed Processor (SSP) mode
and Multiple Streaming Processors (MSP) mode, and
provides a set of MPI libraries for each. MSP mode is for
MPI applications that require large amounts of data to pass
between processes. Here, all four SSPs on a MSP are called
upon to help transfer portions of the data to the other
processes. On the other hand, if an application is
particularly compute-intensive, SSP mode enlists the other
SSPs on the MCM to perform computations. An
optimisation guide is currently being built that will better
explain the different ways an application may provide better
performance.

Scaling
Parallel programming models lose efficient use of

computer resources as processes are added. This is because
the more processes there are, the more overhead required in
the parallel libraries to keep track of data movement
between these processes. To compensate for this, we
implemented additional parallel algorithms to reduce the
library overhead needed to handle the message passing
required by a large number of processes. These new
algorithms allow for fewer serialized data handling schemes,
plus they use the Cray X1 vector instructions. These
algorithms, described later, rely less on the root process to
do the majority of the work. They also use fewer global
synchronization words, thereby reducing the likelihood of
memory collisions.

32 and 64 Bit Library Support
Fortran programmers can take advantage of either the

default 32-bit word size or use the 64 bit word size library
versions. C programmers, of course, must specify int for
the default 32 bit value, and long for the 64 bit word size.

4. Performance enhancements to MPI

This section describes the performance enhancements
made to the core set of MPI message passing routines.
Many other MPI routines are based on these routines and
they have been enhanced as a consequence of the work done
in the core set.

The MPI collective routines (reduce, gather, scatter, and

so on) have been modified to enhance performance. The
general types of modifications are as follows:

• Moving the Fortran entry points into the same file as the
C entry points, and forcing inlining of the code into the
Fortran version. Some routines also contained calls to
internal versions of the code once tracing and error
checking had been completed. Many of these have also
been inlined.

• Convert calls that were to short external routines to
macros that contain the code for these routines. These
include routines such as MPI_CRAY_type_is_bad,
MPI_CRAY_comm_is_bad, MPI_CRAY_comm_rank,
and MPI_CRAY_comm_size, among others.

• The collective routines relied almost exclusively on the
basic Send/Recv/Wait mechanisms in MPI. Since all of
these routines effectively blocked at execution, and
since they separated their communications from normal
user Send/Recv traffic (they used a separate set of tags),
it did not appear necessary to use the normal
communication mechanisms. Since their

CUG SUMMIT 2003 Proceedings 3

communication followed simple, well-behaved patterns,
it was clear that they could benefit from a different data
transfer mechanism.

The new basic data transfer mechanism used by the

collective routines uses symmetrically allocated data
structures that are referenced from the gps structure. Given
the rank of a process, the gps structure can be referenced to
determine the location of data structures located within that
process. The data structures used by the new collective
routines consist of:

• An array of size num_ranks that contains the address of
the data to be transferred.

• An array of size num_ranks that contains the count of
the data to be transferred.

• An array of size num_ranks that contains the data type
of the data to be transferred.

• An array of size num_ranks that contains a start flag
that triggers the transfers.

• An array of size num_ranks that contains a done flag
(used only by the barrier routine) that indicates that the
barrier has been processed by rank 0.

• A check-in counter that counts the number of processes
that have processed a transfer request. This counter
indicates that previous collective operations by the
current process have completed.

The addresses of these structures are translated and

placed into the gps structure so that any process can locate
one of these data structures in another process.

Arrays for buffer addresses, counts, data types, and start

flags are used so that multiple transfers can be initiated at
the same time. If two collective operations should share
some processes but have different communicators and be
issued at the same time, using the arrays will keep the
necessary information separate. The root or sending process
rank, when referenced in the non-root or receiving process,
typically indexes the arrays.

SPECIFIC CHANGES FOR COLLECTIVE ROUTINES

MPI_Allgather, MPI_Allgatherv and
MPI_Allreduce Routines:

These three routines are basically algorithmically
unchanged from the originals. They simply call the
appropriate Gather, Gatherv and Reduce functions and then
broadcast the results to the other processes. There are no
significant performance advantages to rewriting these
functions to combine the operation and the broadcast.

MPI_Alltoall and Alltoallv Routines:

In the old MPI implementation, the algorithm was to

loop over all processes performing receive operations, then
to loop performing send operations and finally to loop
waiting for the sends and receives to complete.

The new algorithm uses the collective structures to

broadcast addresses, counts and datatypes. If the send
buffer is not contiguous, it is packed before any transfers are
attempted. This allows the other processors to use a simpler
algorithm to perform the data transfers – in most cases it
allows for a simple bcopy to move the data. Initially, each
processor places the address, count, and data type of the
portion of the send buffer to be moved into each process,
into the collective structures in the remote process. The
location in the remote process is indexed by the sending
process global rank. As mentioned above, this is why the
address, count, data type and start flags are allocated as
arrays. The check-in counter is set to the number of
processes and used to indicate that all processes have
received their data. Once the address, count and datatype
information has been written to the receiving process, then
the start flag is set and the remote process can read the data
and can begin the transfer.

Each process enters a loop that reads the start flags

being set by the remote senders. Any time a start flag is
found, the address, count and datatype information
associated with that start flag is read. The type2type routine
is then called to move the data from the remote process to
the local process. The type2type routine will handle any
data conversion and reformatting issues in the transfer. The
receiver then decrements the check-in flag for the sender.

The loop that scans for start flags is executed until all

remote processes have been heard from and all data has
been transferred. The use of the scan loop allows for
receives to be processed out of order. Once all transfers are
complete the code waits until the check-in counter goes to
zero, indicating that all sends are complete.

MPI_Barrier:

The algorithm for barriers on the Cray X1 system is

based on a four-way merge of incoming processes and a
single broadcast to signal a resume. Both the shmem barrier

CUG SUMMIT 2003 Proceedings 4

and the MPI barrier use the same algorithm, with minor
differences to account for the calling parameters.

The basic structure used to signal arrival at the barrier is
a four-way tree. At each level in the tree, up to four
processes synchronize using a single word. The depth of the
tree is the log(base 4) of the total number of processes
participating in the barrier. As each process enters the
barrier it uses an atomic memory operation (fadd) to
increment a word shared by up to three other processes.
Until the last process arrives, the processes before it enter a
wait loop that spins on a resume word in local memory.

The last process to arrive continues to the next level in
the tree and again increments a word shared by the next
three groups of processes. If at any time a process is not the
last process at that level then it enters the spin wait loop that
waits on its local resume word.

The last process, at the bottom level, starts the waiting
processes. Rather than transiting up through the tree again,
activating each level, the final process uses a vector scatter
store to set all the resume words in all the waiting processes.
When the store is complete then the process is free to exit
the barrier. All waiting processes exit when they see their
resume word set. All processes clear their resume word
before exit.

There are several important features of this algorithm:

• The number of processes that will access a single word
at a single level is limited to four. This prevents large
“convoy” times where large numbers of processes are
attempting to access the same word on the same node.
This also aids in the scalability of the algorithm.

• Because the algorithm uses a four-way tree instead of a
typical binary tree, there are fewer levels needed for
large numbers of processes. This also means that for a
full barrier, the first level of synchronization takes place
entirely on a node.

• At each level a new synchronization word is used which
is in a separate memory bank. This prevents lower- and
higher-level updates from colliding with each other.

• There is no "master" process, and the last arriving
process triggers the resume.

• Since all updates to the level synchronization words are
through atomic memory operations, and all updates of
the resume words are through normal memory
operations, no gsync instructions are needed by the
algorithm. Only a single gsync is placed at the start of
the routine to ensure that user memory operations are
complete.

• Waiting processes spin on a resume word in their local
memory. After the first pass through the wait loop, this
word is loaded into the data cache, and no memory
traffic leaves the processor chip from a waiting process.

• When the last process triggers the resume we do not
have to wake up processes going back up the tree. With
the vector hardware the algorithm can make effective
use of the memory bandwidth of the machine. The last
process can also exit when the last resume word is
written. No gsync is necessary, and the resume write
can still be in the memory network while the process is
exiting the barrier routine.

• The resume words are skewed across the processes so
that each resume word is in a separate memory bank on
the node. This ensures each process will get its resume
signal from a unique memory bank, and it prevents
collisions in writing the resume word.

• This algorithm remains unchanged whether running
with MSPs or SSPs. The only difference is that the first
two levels of the tree take place on a node. The
skewing for the synchronization and resume words
already allows for the possibility of SSP mode
operation. No attempt is made to use msync
instructions since not all P chips within an MCM may
be participating in the barrier and, unlike MSP mode,
SSPs may not be assigned in sequence into a job.

NPES IBM Power 4 Cray SX-6 Cray X1
2 6.7 5 3.25
4 12.1 7.1 6.45
8 19.8 22 7.80

Figure 1. Times are in microseconds

MPI_Bcast:

The old algorithm used a power-of-2 type explosion

from the root. This involved log(base2) levels of
broadcasting. The even processors at each level would
perform a heavy weight send operation to the odd processors
for the same level. This "even/odd"ness was determined by
checking the 2**level bit in the rank. Since the checking
started at the high bit of the rank, this involved initially
sending to distant processors, and ended with send/recv
pairs to nearest neighbours. The algorithm had one
drawback: if the root was not zero, the processes were
effectively wrapped with the non-zero root being used as a
base. This could lead to even more communication between
distant processors.

CUG SUMMIT 2003 Proceedings 5

In the new algorithm, the non-root processes pull the
data from the root process. The root process moves the data
to a preallocated buffer – if it is small enough (< 32 bytes).
This allows the root process to exit quickly, even before the
non-root processors have transferred the data. If the amount
of data is large and non-contiguous, it is packed into a
contiguous buffer. The root process then broadcasts the
address of the appropriate buffer along with the count and
the datatype for the transfer. The root process then sets the
start flag to trigger the non-root processes.

The non-root processes loops to wait for the start

trigger, then read the address, count and datatype. (They use
the type2type routine to transfer data and perform any data
conversion and reformatting.) Once the non-root processes
have transferred the data, they decrement the check-in flag
on the root process. As each non-root process completes its
transfer, it exits the broadcast routine.

MPI_Gather and MPI_Gatherv:

In the old algorithm, the root process issued Irecv

requests for all the non-root processes to place the data into
the sections of the receive buffer. It used type2type to
transfer its own data from its send buffer to the receive
buffer. It then waited for all Irecv requests to complete.
The non-root processes performed a Send operation to send
their data to the root process. This resulted in the root
process performing all of the actual work to copy all of the
data segments to the receive buffer.

In the new algorithm the root process determines the

locations for each process to place its data, and then uses the
collective structures to transmit the address, count and
datatype to the non-root processes. It sets the check-in flag
to the number of processes minus 1, then transfers its own
data from the send buffer to the receive-buffer using
type2type. The root process then loops on the check-in
count to wait for all non-root processes to transfer their data.
This effectively involves a "push" from all non-root
processes.

The non-root processes loop to wait for the start flag,

and then read the destination address count and datatype.
These processes use the type2type routine to transfer the
data from their local storage to the root receive buffer. On
completion of the transfer they use atomic memory ops to
decrement the check-in count in the root process.

By using a "push" type algorithm, the new gather

routines can perform the actual data transfer in parallel.
Again, all looping on wait flags is performed on data words
in the local memory space, thereby eliminating system
memory traffic. Broadcasts of values and trigger flags could

be done in vector mode in an application being run in RTT
mode.

MPI_Reduce:

The old algorithm used a power of 2 folding on the

processes involving log(base2) levels of operations. The
odd processes used Send to transmit their data to the even
processes. Where "even/odd"ness was determined at each
level by the process number ANDed with 2level. The even
processes performed receive operations, which include
performing the actual data transfer, and invoked the
reduction function. Since the MPI standard requires that the
reduction functions have only two input buffer arguments,
with the second serving as the output buffer as well, the
algorithm established two sets of buffers and carefully
arranged the buffer so that the final operation placed the
result in the receive buffer for the reduce. If the root for the
reduction was not rank zero, a final copy was often needed
to transfer the data to the root. (This only happened if the
operation is non-commutative.)

The new algorithm still uses a power of 2 folding on the

processes. The odd processes place the address of a buffer
they wish to send into the collective structure and trigger the
start flag. The even processes start the first level by
transferring data from the send buffer to the receive buffer
(Note: This is due to the problem with the MPI definition of
the reduction function. A method is being investigated to
eliminate this initial copy for the "built-in" MPI reduction
types.). The even processes then wait for a buffer address to
arrive from the odd processes. Once the address arrives, the
reduction function is invoked and the data from the remote
processor is read directly by the reduction function,
combined with the local data, and output into the local
buffer. The remote processor is signalled that the transfer is
complete by decrementing the check-in flag in the remote
process via an atomic memory operation.

Based on the commutatively of the operation being

performed (all built-in MPI reduction functions are
commutative), the new algorithm pulls in data from
processors to the right (that is, higher rank processes). This
results in good performance for reductions to the rank zero
process, and requires no further transfers once the reduction
is complete. For reductions to a non-zero rank process, the
process numbers are wrapped by adding the root rank
modulo the number of processes. This can lead to the need
for transfers from some more distant processes, but it is
better than having to add another copy after the final
reduction.

For non-commutative operations, the algorithm remaps

the process numbers such that the pull of the data takes
place from the left (that is, lower rank processes). This

CUG SUMMIT 2003 Proceedings 6

results in the final reduction being placed in the highest
numbered process and almost certainly means that the result
will have to be copied to some other process (probably rank
zero). This is not desirable but seems to be necessary due to
the non-commutative nature of the operation and the MPI
standard definition of the reduction functions.

MPI_Reduce_scatter:

This routine is effectively unchanged from the original.

It simply calls the Reduce and then the Scatterv functions.
No significant performance advantage appears to result from
attempting to combine these operations since the reduction
must be completed before the scatter can begin.

MPI_Scan:

The old algorithm involved a Receive from the next

lower ranked process, a copy of the send data to the receive
buffer, and the invocation of the MPI reduction function.
The process then sent the result to the next higher ranked
process. Each process was free to continue as soon as it sent
its data on to the next process in rank.

The new algorithm has each process use the collective

structures to wait for the address, count, and data type from
the lower ranked process. Because variations in data layout
and type are permitted between processes, the process must
use type2type to transfer the data into its local memory. The
MPI reduction function is then invoked with the result being
placed in the receive buffer. For non-commutative (and
therefore non-built-in) functions, the algorithm performs a
copy of the initial data from the send buffer to the receive
buffer before calling the MPI reduction function. The
process then passes on the address, count and data type for
its receive buffer to the next higher process, and waits until
the higher ranked process has picked up the data.

MPI_Scatter, MPI_Scatterv:

The old algorithm had the root loop over an Isend to
each of the remote processors with the appropriate portion
of the send buffer being transmitted. It then received a
"send_to_self" in order to handle datatype conversion
problems. It then performed a loop over request_wait to
wait for the sends to complete. The non-root processes
simply performed a receive from the root and transferred the
data into their receive buffers.

The new algorithm has the root process loop over all of

the other processes, and transmit the proper address offset
within the send buffer along with the count and data type. It

sets its check-in value to the number of processes (minus 1)
and it then sets the start flag to trigger the other processes.
The root process then calls type2type directly to perform the
data transfer from its send buffer into the receive buffer with
the proper data type conversion. The root waits until the
check-in count goes to zero before returning.

The non-root processes wait until they are triggered by

the start flag, and then pick up the address, count, and data
type. They perform the data transfer in parallel using the
type2type routine. When they complete the transfer, they
decrement the check-in flag on the root process and exit.

SPECIFIC CHANGES TO SEND - RECEIVE

MPI_Send, MPI_Receive:

The MPI_Send process begins by acquiring a packet in

the destination process memory. This packet is used to store
information about the sending process context, tag, and
source rank number. It also contains information about the
type and length for the data to be transferred. The packet
optionally contains either a pointer to the data in the sending
processes memory and an acknowledgement flag word, or it
can contain the data itself if it is less than a fixed payload
size (currently 64 words).

If the amount of data to be sent is less than 64 words,

then the data is copied directly into the packet on the remote
destination process. The packet address is added to the
incoming list queue on the remote process; and the send
operation is considered to be complete and returns to the
caller.

If the amount of data to be sent is greater than the

payload size, a pointer to the data is placed in the packet
along with the address of a word to be set when the transfer
is complete. The packet is added to the incoming list queue
of the destination process; and the sending process waits to
be signalled that the destination process has transferred the
data.

If buffering is turned on in MPI, the data to be sent is

packed into buffer space; and then the address of the buffer
space is passed in the packet along with a pointer to an
acknowledge list entry. The packet is then added to the
incoming list queue of the destination process; and the
sender can return to the caller.

When MPI_Recv is called by the destination process,

the receive request list is checked to see if there are other
outstanding receive requests that have been generated by
calls to MPI_Irecv. If there are none, then the receiving
process simply loops to wait for a packet to show up in the
incoming queue. Once a packet appears in the incoming list,
a match is attempted against the context, source, and tag of
the current receive request. The incoming list is continually

CUG SUMMIT 2003 Proceedings 7

scanned until a matching entry appears in the list. Once the
match is found, the data is transferred, and if necessary, a
completion flag is set or an acknowledgement is flagged in
the sending process.

If, when MPI_Recv is called, there are other receive

requests already in the list as a result of prior calls to
MPI_Irecv, then the current request must be added to the list
in the proper order. This requires that a request entry be
acquired from the free list and filled with the information
specified by the request. Once the current request has been
added to the list, the entire list is matched, in order, against
the incoming list.

Paired receive requests and incoming list packets are
processed by moving the data from the packet, for short
sends, or from the sending process memory, for long or
buffered sends. Completion flags and acknowledgement
flags are set in the sending process as required by the
incoming packet.

This process of matching the receive requests with the

incoming list continues until the request associated with the
MPI_Recv is matched and the data transferred. Once the
request has been satisfied, then the MPI_Recv routine is
allowed to return to the caller.

5. Coding and Algorithmic Considerations

Much performance testing has been done, and the
results indicate that we have made great progress in most
areas relative to these same tests run on the T3E.

Graphing the data show that larger data sizes (128KB –

2MB) that get transferred between Cray X1 processors have
better throughput than the same data sizes on either the IBM
Power-4 or SX-6, as shown here:

NPES=2 128KB 512KB 2MB

IBM Power4 1760 MB/s 1863 MB/s 131 MB/s7

Cray SX-6 6211 MB/s 8266 MB/s 958 MB/s0

Cray X1 10288 MB/s 14148 MB/s 1981 MB/s2
Figure 2. 1
Note that we are still working to improve our performance.

1 Figure 1 Data taken from Table 4 in the paper
“Performance Evaluation of the SX6 Vector Architecture for
Scientific Computations” by Leonid Oliker, Andrew
Canning, Jonathan Carter, John Shalf, David Skinner
CRD/NERSC, LBNL; Stephane Ethier Princeton Plasma
Physics Lab; Rupak Biswas, Jahed Djomehri, Rob Van der
Wijngaart NAS Div. NASA;
Tom Goozen, Cray Inc collected the Cray X1 data.

Review Application Design Assumptions
If code designs have not been looked at for four to five

years, a review of the design assumptions should be made in
light of current architectural designs in both hardware and
software technologies.

Replace simple Send/Receive with CAF/UPC
In some instances replacing simple sends and receives

with Co-Array Fortran (CAF) or Unified Parallel C (UPC)
will boost performance. This is true in cases where the basic
datatype is known and arrays of similar data are to be moved
from one process to another. The overhead is eliminated
that would normally be needed for MPI to handle requests,
as is the overhead for the checking that normally happens
for data conversion.

About the Authors

Jeff Nicholson is the lead software engineer for MPI
with Cray Inc. He has broad background in compilers,
libraries and provided input in the instruction set design of
the Cray X1 system. Jeff has been with Cray for over 20
years.

Tom Goozen manages the Programming Environment

Libraries group that includes Craylibs, MPT and X-window
libraries.

	1. Introduction
	2. Cray’s Commitment to MPI
	MPI 1.2 and MPI-2 Support
	MPI-2 Porting Exceptions
	Mixing Programming Models

	3. Hardware Advantages
	Single System Image
	Distributed Memory Architecture
	SSP and MSP modes (available in the PE 5.0 release)
	Scaling
	32 and 64 Bit Library Support

	4. Performance enhancements to MPI
	SPECIFIC CHANGES FOR COLLECTIVE ROUTINES
	MPI_Allgather, MPI_Allgatherv and MPI_Allreduce Routines:
	MPI_Alltoall and Alltoallv Routines:
	MPI_Barrier:
	MPI_Bcast:
	MPI_Gather and MPI_Gatherv:
	MPI_Reduce:
	MPI_Reduce_scatter:
	MPI_Scan:
	MPI_Scatter, MPI_Scatterv:
	SPECIFIC CHANGES TO SEND - RECEIVE
	MPI_Send, MPI_Receive:

	5. Coding and Algorithmic Considerations
	Review Application Design Assumptions
	Replace simple Send/Receive with CAF/UPC

	About the Authors

