
C AND C++ PROGRAMMING FOR THE VECTOR PROCESSOR

Geir Johansen, Cray Inc., Mendota Heights, Minnesota, USA

Abstract: The Cray Standard C and C++ compilers have the ability to perform many types of
optimizations to improve the performance of the code. This paper outlines strategies for C and C++
programming that will give the Cray Standard C and C++ compilers a greater opportunity to generate
optimized code.

1.0 Scope of the Paper

 The purpose of this is to give guidance to C
and C++ developers in writing code, so that the
Cray compiler will produce better optimized
code. An algorithm can be coded in several
different ways; however, the Cray compiler can
more easily optimize certain styles of coding.
The more optimization that is initially performed
by the compiler, the less time the user needs to
spend on analyzing and manually optimizing the
code. The paper is not intended for a specific
Cray architecture, so in general, machine specific
optimization issues such as memory contention
are not discussed. Also, the paper does not
discuss optimization techniques, such as loop
fusing, that can be performed by the compiler.
The paper focuses on writing code for the Cray
Standard C and C++ compilers so that it has a
better chance to optimize the code.

 The paper generally limits its discussion to
vectorization optimization, however, many of the
ideas discussed will also help the compiler in
producing code that has better multistreaming,
tasking, and/or scalar optimization.

2.0 The Cray Standard C and C++ Compiler

 The Cray Standard C and Cray C++ compiler
are the same executable file. The Cray C/C++
compiler has four main components:

1) Edison Design Group (EDG) Front-end
2) Kuck & Associates (KAI) Inliner
3) PDGCS Optimizer
4) Code Generator

 PDGCS (Program Dependence Graph
Compiling System) is the area of the compiler
that performs most of the optimization of the
code. PDGCS has been a part of the compiler
since the Cray YMP. The Cray C/C++ compiler
greatly benefits from the fact that PDGCS is also
the backend for the Cray Fortran compiler. The
Cray C/C++ compiler leverages the extensive
testing and development to PDGCS for the Cray
Fortran compiler. Optimizations that PDGCS
perform include:

∑ Reduction loops
∑ Loop fusing
∑ Loop unrolling
∑ Loop unwinding
∑ Loop interchange
∑ Loop splitting
∑ Pattern matching
∑ Code elimination

2.1 Determining Optimization of the Code

 The Cray C/C++ compiler reports on the
optimization of the code via the ‘-h report=’
compiler option. The option takes the following
arguments:

∑ i inlining optimization
∑ m multistreaming optimization
∑ s scalar optimization
∑ t tasking optimization
∑ v vector optimization
∑ f outputs report to <filename>.V

 Unfortunately, the Cray C++ does not have a
listing feature similar to Cray Fortran to mark the

optimization of the code within a listing of the
program.

3.0 Defining the Datasets

 The compiler performs two main functions in
creating functionally correct code and optimizing
that code for the machine. The function of
creating functionally correct code for all possible
datasets is usually the factor that limits the
amount of the optimization that can be
performed. A corollary to this fact is that the
more information that the compiler knows about
the dataset being operated on, the more potential
there is for optimization of the code. The
Fortran compiler’s knowledge of the data it is
operating on is typically why a Fortran coded
code will outperform a similar C coded program.
This section will illustrate ways that code can be
written so that it is more “optimizable” by the
compiler.

3.1 Ambiguous Aliasing of the Data

 Pointers have been lumped with the goto
statement as a marvelous way to create
impossible-to-understand programs.

-Kernighan & Richie

 While pointers may make program difficult to
decipher for novice C programmers, they also
make it more difficult for the compiler to
optimize the code. The fundamental problem
concerning pointers is that the compiler cannot
be sure where the pointer is pointing, this
situation is known as the ambiguous aliasing of
data. If the compiler is uncertain of the location
of the data, then it cannot determine if the code
has any data dependencies. For example,
compare the two routines:

$ cat pntr0.c
extern a[100];
extern b[100];

void pntr0(])
{
 int i;
 for (i=0; i<64; i++)
 b[i] = i * a[i];
}

$ cat pntr1.c
void pntr1(int *a, int *b])

{
 int i;
 for (i=0; i<64; i++)
 b[i] = i * a[i];
}

The code generated for pntr0 runs faster than
the code for routine pntr1 because the compiler
knows that there is no data dependencies
between a and b in pntr0. An example of data
dependency would be if the program had an
integer array int c[100] and pntr1 was
called with the parameters pntr1(&c[0],
&c[1]).

 The Cray compiler will not generate fully
vectorized code for the loop in routine pntr1,
however, the loop be vectorized with a computed
maximum safe vector length. What this implies
is that code will be inserted in the routine to
check the data at run time for the maximum
vector length that can be used. In the case of
pntr1(&c[0], &c[1]), the vector length is
equal to one, which means that the code will run
the same as scalar code. When the overhead of
computing the vector length is added, the
resulting code will run slower than a scalar
version of the routine.

 If the user knows that pointers in the code will
never overlap into another pointer’s data area,
then the pointer can be designated as a restricted
pointer. A pointer can be designated as a
restricted pointer by using the restrict
keyword, or by using the Cray C/C++ ‘-h
restrict’ command line option. Rewriting the
routine as follows will result in a loop that will
fully vectorize:

void pntr1(int * restrict a, int
* restrict b])
{
 int i;
 for (i=0; i<64; i++)
 b[i] = i * a[i];
}

3.2 Scope of Pointers

 While a restricted pointer designates a
covenant between the user and the compiler that
pointers will not overlap into another pointer’s
data, it does not insure that the pointer will not
change its value within the routine. If during the
scope of the pointer in a routine, only the data
being pointed to by the pointer is operated on,

and not pointer itself, then the user may increase
the potential for optimization by designating as a
const pointer. Using the example from the
previous section, the call to the routine can be
rewritten as follows:

void pntr1(int * const restrict
a, int * const restrict b])
{ ……… }

 The const keyword informs the compiler
that pointers a and b will continue to point to the
same data segment in the routine. The values of
the data segment can be changed, but not the
pointer itself.

 If the pointer being passed is only used to
point to read-only data, the pointer can be further
defined to show it is pointing to constant data
(i. e. const int * const restrict a).
This further refinement of the data has not been
seen to increase optimization by the Cray C/C++
compiler.

3.3 Multiple Indirection of Data

 As mentioned the compiler is conservative in
assuming aliasing of data, which results in less
optimization of the code. As more levels of
indirection are added to variables, the more
difficult it is for the compiler to determine data
dependencies. If the compiler cannot rule out
that there are no data dependencies in a loop,
then this limits the amount of optimization that
can be done by the compiler. The use of
restricted pointers can be used to inform the
compiler that there are no data dependencies,
however, the process of determining all the
pointers that need to be restricted to optimize the
code may be time consuming. The following
example shows what pointers need to be made
restricted in order to optimize the code:

sub(float * restrict * restrict *
restrict a,
 float * restrict * restrict *
restrict b,
 float * restrict * restrict *
restrict c,
 int n)
{
 int i,j,k;
 for(k=0;k<n;k++)
 for(j=0;j<n;j++)
 for(i=0;i<n;i++)
 c[k][j][i] += a[k][j][i]
* b[k][j][i];
}

 The pointers could also be made restricted
by using the ‘–h restrict=’ option. In the
following example the Cray C++ compiler
option ‘-h restrict=f’ is used to make all
function arguments restricted pointers, which
allows the code to optimize:

//compiled with ‘-h restrict=a’
sub(float ***a,
 float ***b,
 float ***c,
 int n)
{
 int i,j,k;
 for(k=0;k<n;k++)
 for(j=0;j<n;j++)
 for(i=0;i<n;i++)
 c[k][j][i] += a[k][j][i]
* b[k][j][i];
}

 Another option is to use compiler
directives, such as ivdep or concurrent,
to tell the compiler to assume the code has no
data dependencies. The following example
shows the ivdep directive being used to
optimize the code:

sub(float ***a,
 float ***b,
 float ***c,
 int n)
{
 int i,j,k;
 for(k=0;k<n;k++)
 for(j=0;j<n;j++)
#pragma _CRI ivdep
 for(i=0;i<n;i++)
 c[k][j][i] += a[k][j][i]
* b[k][j][i];
}

3.3.1 Eliminating Indirection

 A strategy for dealing with multiple
indirection is to remove the indirection by either
copying data to temporary variables or moving
the algorithm to a subroutine. Here is an
example of moving code to a subroutine:

for(i=0;i<z->b->size;i++)
 z->b->data[i] = x->b->data[i]
* y->b->data[i];

 The above loop can be replaced by the
following subroutine call and subroutine:

sub(x->b->data, y->b->data,z->b-
>data, z->b->size);
 .
 .
sub(float * restrict a,
 float * restrict b,
 float * restrict c,
 int n)
{
 int i;
 for(i=0;i<n;i++)
 c[i] = a[i] * b[i];
}

3.3.2 Memory Access of Multiple Indirection

 Each level of indirection of a variable adds
one more memory operation. For example,
accessing the variable A->B->*data could
result in as many as four memory accesses. The
compiler does its best to try to keep variables in
registers, but because of code complexity or
perceived data dependencies, the compiler may
unnecessarily need to reload the variable. For
example, in the following code the user may
want to consider loading the value of A->B-
>*data to temporary variable before calling
and using this value in the routine:

 x = A->B->*data * a;
 printout(A); // A not changed
 y = A->B->*data * b;

3.4 Dimension of the Dataset.

 The more information that can be given to the
compiler about the dimension of the dataset
being operated, the more opportunity the
compiler has to perform optimization. An
example of how knowing the dimension of the
dataset at compilation increases optimization is
shortloop vector optimization. If the compiler
knows the loop count is less than the machine’s
vector size, then the compiler can replace the
loop with vector operations. If the loop count is
greater than machine’s vector size, then the
compiler can choose the optimal vector length
for the loop. Knowing the dimension of the data
being operated on also helps in the compiler
performing other optimizations such as loop
fusing and loop unrolling.

3.4.1 Variable Length Arrays (VLAs)

 Variable Length Arrays (VLAs) can be used to
communicate to the compiler more information
about the dataset. Even if the size of the VLA is
not known at the time of compilation, the
compiler will benefit in knowing that the pointer
is pointing to arrays of uniform length. In the
following example the routine vla0 has been
rewritten to vla1, so that arrays a and b have
been declared in the routine as VLAs. The
compiler is able to take advantage of the this
information by collapsing the loops:

void vla0(a,b,m,n)
int m;
int n;
float * restrict * restrict a;
float * restrict * restrict b;
{
 int i,j;
 for (j=0;j<m;j++)
 for (i=0;i<n;i++)
 b[j][i] = a[j][i];
}

 Rewritten code:

void vla1(a,b,m,n)
int m;
int n;
float (* restrict a)[n];
float (* restrict b)[n];
{
 int i,j;
 for (j=0;j<m;j++)
 for (i=0;i<n;i++)
 b[j][i] = a[j][i];
}

CC-6003 cc: SCALAR File = vla1.c,
Line = 10
 A loop was collapsed into the
loop starting at line 11.

3.5 Scalar Temporaries

 A scalar variable causing a data dependency,
or recurrence, in a loop may have the
dependency removed by converting the scalar to
a vector variable. In the following example the
scalar variable s is converted to a vector variable
for the outer loop, then the loops are switched:

// original code
scal0(float * restrict a,
 float * restrict b,
 int m, int n)
{

 int i,j,k;
 float s;
 for(j=0;j<n;j++) {
 s= 0.0;
 for(i=0;i<m;i++) {
 s = s + a[i];
 b[i] = b[i] + s;
 }
 }
}

//modified code
sub(float * restrict a,
 float * restrict b,
 int m, int n)
{
 int i,j,k;
 float s[n];
 for(j=0;j<n;j++)
 s[j] = 0.0;
 for(i=0;i<m;i++) {
 for(j=0;j<n;j++) {
 s[j] = s[j] + a[i];
 b[i] = b[i] + s[j];
 }
 }
}

4 Eliminating Optimization Inhibitors

 For C/C++ programs the factors that prevent a
loop from vectorizing and performing other
optimizations include:

∑ Subroutine calls
∑ Data type
∑ Unrestricted branches
∑ Data Dependencies

 This section will provide some coding
strategies to eliminate these optimization
inhibitors.

4.1 Subroutine Calls

 Unless a subroutine is a compiler intrinsic or
a user defined vfunction, the compiler will
not vectorize loops with subroutine calls. The
following are ways to eliminate subroutines calls
within a loop.

4.1.1 Inlining

 A subroutine can be inlined within a loop to
increase optimization. After the subroutine has
been inlined into the loop, there is potential the
loop will be vectorized. At the very least, the
overhead to call the subroutine will be removed
from the loop. A subroutine can be marked to be
inlined by using the inline directive or by
using the C++ inline keyword. The Cray
C/C++ option ‘-h inline’ is used to control the
level of inlining optimization. At this time, the
Cray C/C++ compiler will only inline routines
that are located in the specific file being or any
of the header files it includes.

4.1.2 Pushing loop to Subroutine

 An alternative to inlining is to push the loop
calling the subroutine in to the subroutine. After
the loop is pushed into the subroutine the loop
may be able to be optimized. Also, the overhead
of calling the routine will be removed from the
loop. The following example shows the loop in
sum0 being pushed into a subroutine:

$ cat push0.c
int sum0 (int * restrict a,
 int * restrict b,
 int n)
{
 int i;
 int s=0;
 for (i=0;i<n;i++)
 s += prod(a[i],b[i]);
 return s;
}

int prod(int a, int b) {
 return a * b;
}

$ cat push1.c
int sum1 (int *a, int *b,
 int n)
{
 // push loop into sum_prod()
 return sum_prod(a,b,n);
}

int sum_prod(int * restrict a,
 int * restrict b,
 int n)
{
 int i;
 int s=0;

 for (i=0;i<n;i++)
 s += a[i] * b[i];
 return s;
}

4.2 Vector Data Types

 One reason that a loop may not vectorize is
that the data being operated on is not word-size
data. In practice, the compiler is able to
vectorize a good portion of loops not operating
on word-size data such as characters. A code
may benefit from copying non-word-size data,
such as bitfields, to word-size data, then
operating on this new data structure.

4.2.1 Partial-word data

 An alternative to copying data is to redefine
data structures so that they are word-size. In the
following example, struct A is redefined so
element char c is now declared in a union
along with an int. The change will now allow
the loop to vectorize under default optimization:

$ cat struct1.c
struct A {
 char c;
 int x;
}

sub(struct A * restrict *
restrict a1,
 struct A * restrict *
restrict a2,
 int n)
{
 int i;
 // loop does not vectoize
 for (i=0; i<n; i++) {
 a2[i]->c = a1[i]->c;
 a2[i]->x = a1[i]->x;
 }
}

$ cat struct2.c
struct A {
 union {char c; int i;} u;
 int x;
}

sub(struct A * restrict *
restrict a1,
 struct A * restrict *
restrict a2,

 int n)
{
 int i;
 // loop vectoizes
 for (i=0; i<n; i++)
 a2[i]->u.i = a1[i]->u.i;
 a2[i]->x = a1[i]->x;
}

4.2.2 C++ Complex Data Type

 The C++ Standard Library defines a complex
class to operate on complex numbers. If a user
has C++ code operating on complex numbers,
they may consider using the complex data type
defined in Cray C. For example, if the C++
program is performing calculations on arrays of
complex number, then the program most likely
will benefit from:

∑ Copying the C++ complex arrays to Cray C
complex arrays.

∑ Perform the calculations in the C routine.
∑ Copy the resulting Cray C complex arrays

back to the C++ complex arrays.

4.3 Program Branches

 Program branches into, out of, or within a loop
may cause a loop not to be optimized. Here are a
couple of suggestions to help increase the
optimization potential.

4.3.1 Placement of Conditional Loop Exits

 If the loop contains a conditional statement
that results in the program exiting the loop, then
it usually benefits optimization if these
statements appear at the very beginning of the
loop. For example, the following loop in sub1
will vectorize, but the loop in sub2 will not be
vectorized by the compiler:

sub1(int * restrict a,
 int * restrict b,
 int * restrict c,
 int n)
{
 int i;
 for (i=0; i<n; i++) {
 if (a[i])
 break;
 if (b[i])
 break;
 c[i] = 0;

 }
}

sub2(int * restrict a,
 int * restrict b,
 int * restrict c,
 int n)
{
 int i;
 for (i=0; i<n; i++) {
 c[i] = 0;
 if (a[i])
 break;
 if (b[i])
 break;
 }
}
CC-6277 cc: VECTOR File = exit.c,
Line = 23
 A loop was not vectorized
because the loop exit test is too
complicated.

4.4 Data Dependencies

 The elimination of data dependencies was
covered in section 3 of the paper. Here are some
other ways data dependencies can be eliminated.

4.4.1 Compiler Directives

 The ivdep directive informs the compiler to
ignore vector dependencies for the immediately
following loop. The directive is useful for
optimizing loops that contain multiple
indirection and cannot be optimized using
restricted pointers. The use of the restricted
pointers provides a stronger assertion to the
compiler than the ivdep directive; so using
restricted pointers to optimize code usually
results in better performance.

 The concurrent directive is similar to the
ivdep directive. This directive informs the
compiler to assume the following loop has no
data dependencies and streaming optimization
should be attempted on the loop.

4.4.2 More Aggressive Optimization

 The user may want to try increasing the level
of optimization of the code through the use of the
optimization command line options. The
tradeoff of using higher level of optimizations is
that compile time will increase. The Cray X1

C/C++ compiler has implemented the command
line option ‘-h display_opt’ that displays the
optimization settings of the compilation. This
option is useful in determining what optimization
options can be increased by the user on the
compilation command line. It is important to
note that the exact optimizations used for the
default optimization setting and ‘-O[0,1,2,3]’ are
subject to change from one major release to the
Cray C/C++ compile to the next.

 Examples of optimizations that are available
through increased optimization settings are:

∑ Forward substitution
∑ Better dependence analysis
∑ Improved alias analysis
∑ Loop splitting

5.0 C++ Optimization

 The best advice concerning the optimization
of C++ on a Cray system is to avoid using C++
whenever possible. The main issue with C++
concerning optimization is the multiple level of
indirection involved with C++. A class member
function accessing a class member variable
requires at least one level of indirection (“this”
pointer) to access the variable. As discussed
earlier multiple layers of indirection make it
more difficult for the compiler to optimize the
code. If C++ must be used, the following coding
strategies will help it perform better.

5.1 Reduce Calls to Constructors and
Destructors

 Each time a class variable is declared, a call to
a constructor routine and a destructor routine will
be performed. Eliminating calls to constructors
and destructors can improve the code’s scalar
performance.

5.1.1 Initialization of Member Variables

 A class constructor performs initialization of
member variables. The initialization of these
variables can be performed in the body of the
constructor routine, or they can be done through
member initialization. Member initialization is
preferred, as it will result in only one call to the
constructor. The following example shows how
the constructor for class A is called only once
when member initialization is used:

$ cat con.cc

#include <iostream>
using namespace std;

class A {
 private:
 int x;
 public:
 A() { x=0;
 cout << " A.1
constructor\n";
 }
 A(int i) { x=i;
 cout << " A.2
constructor\n";
 }
};

class B1 {
 private:
 class A y;
 public:
 B1(class A a) : y(a) {};
};

class B2 {
 private:
 class A z;
 public:
 B2(class A a) { z = a; };
};

int main() {
 cout << "Declaring class B1\n";
 class A a1(1);
 class B1 b1(a1);
 cout << "Declaring class B2\n";
 class A a2(2);
 class B2 b2(a2);
}

$ CC con.cc; ./a.out
Declaring class B1
 A.2 constructor
Declaring class B2
 A.2 constructor
 A.1 constructor
$

5.1.2 Placement of Class Variable
Declarations

 The declaration of a class variable invokes a
call to constructor routine and a subsequent call
to a destructor routine, so the user should be
aware on the placement of the class variable
declaration. For example, the following example

results in N calls to class A’s constructor and
destructor routine:

 for (i=0; i<N;i++) {
 class A tmp;
 tmp = a;
 a = b;
 b =tmp;
 }

 The following code will result in only one call
to class A’s constructor and destructor routine:

 class A tmp;
 for (i=0; i<N;i++) {
 tmp = a;
 a = b;
 b =tmp;
 }

5.2 Call by Reference

 The C language performs call by value when
passing arguments to a routine, which results in a
copy of the argument value being passed to the
called routine. In C++, a routine can call by
reference in passing arguments. This method is
faster in that the arguments are not copied when
calling the subroutine. The following example
shows that a routine that passes the C++
Standard Library vector class as an argument is
eight times faster when called by reference as
oppose to called by value:

$ cat ref.cc
#include <iostream>
#include <vector>
#include <intrinsics.h>
using namespace std;

call_by_value(const vector<int>
a) { }
call_by_ref(const vector<int> &a)
{ }
#pragma _CRI noinline
call_by_value, call_by_ref

int main() {
 vector<int> a;
 int i,t0,t1,t2;
 t0 = _rtc();
 for(i=0;i<1000;i++)
 call_by_value(a);
 t1 = _rtc();
 for(i=0;i<1000;i++)
 call_by_ref(a);
 t2 = _rtc();

 cout << "Call by value / Call by
ref = "
 << (double)((double)(t1-
t0)/(double)(t2-t1))
 << endl;
}

$ CC ref.cc; ./a.out
Call by value / Call by ref =
8.04128
$

5.3 Inlining of Member Functions

 One feature that greatly improves the
performance of C++ code is that member
functions that are define within a class are
automatically inlined. As a result, the user
should attempt to define member functions
within a class, or mark them with the inline
keyword. Also, in order to increase inlining
throughout the program, the member functions
should be defined in a header file rather than a
corresponding source file for the header file. In
the following example, the routine sub will inline
one_x, since it has been defined within class
util’s definition. The routine two_x will not
be inlined using default optimization, however,
the routine three_x will be inlined since it has
been marked by the inline keyword. The routine
four_x is not inlined, since it is not seen when
compiling the routine sub.cc:

$ cat sub.c
#include “util.h”
sub(class Util u)
{
 u.one_x(); //inlined
 u.two_x(); //not inlined
 u.three_x(); //inlined
 u.four_x(); //not inlined
}

$ cat util.h
class Util
{
 private:
 int x;
 public:
 Util() : x(0) { };
 Util(int i) : x(i) { };
 public:
 void one_x() { x += 1; };
//inlined
 void two_x();
 void three_x();
 void four_x();

};

void Util::two_x() { x += 2; }
//not inlined

inline
void Util::three_x() { x += 3; }
//inlined

$ cat util.cc
#include "util.h"

inline
util::four_x() { x += 4; } //not
inlined

5.4 Use C Functions

 The multiple indirection and layers of inlining
may make the optimization of the code difficult
for the compiler. The user may want to consider
using C syntax when coding computative
intensive sections of the program.

5.5 C++ Standard Library

 Cray C++ contains the C++ Standard Library.
At this time, the code of the C++ Standard
Library has not been fully optimized for Cray
systems.

6.0 Alternative Algorithm

 This section presents vector friendly
programming alternatives to the ubiquitous C
linked list example. A linked list loop will not
be optimized since each loop iteration requires
the pointer value from the previous iteration. As
a result, the loop will not be able to be
multistreamed nor vectorized:

 // linked list example
list_t *p
for (p=top; p != 0; p=p->next)
 p->a = p->a * x

 One alternative is to build an index array
after the linked list has been initially created.
The list node can now be accessed via the list
array:

list_t *list =
malloc(n*sizeof(list_t *));
int n = 0;

for (p=top;p != 0; p=p->next)
 list[n++] = p;

// access the nodes via a
// list array
for(i=0;i<n;i++) {
 list[I].a = list[I].a * x;

 Another alternative is to initially build the
list as an expanding array of structs. The
following code shows the routine
new_node(), which is called to add a new
node to the list. The resulting list is an array of
structs:

//add new node to list
struct list *new_node(void) {
 if (count >= max) {
 max+= 100000;
 list = realloc (list,
max*sizeof(struct list));
 }
 return &list[count++];
}

7.0 C/C++ Alternatives

7.1 UPC

 UPC (Unified Parallel C) is an extension to
Cray C/C++. The UPC (Unified Parallel C)
programming model will explicitly specify
parallelism in the code.

7.2 Fortran

 As discussed earlier, Fortran does have some
advantages in its ability to be optimized. The
user may want to consider writing portions of the
program in Fortran. Cray Fortran implements
new Fortran 2000 C interoperability features.

7.3 Libraries

 If possible, the user will want to take
advantage of library routines from the Cray
Scientific Library (libsci), as these routines have
been optimized for the Cray hardware. System
libraries, such as memcpy, are sometimes
overlooked, but they also have been optimized
for the machine and should be used.

Summary

 The paper has outline several strategies to
increase the optimization of C and C++ code.
The focus of the techniques has been to increase
information about the code to the Cray C/C++
compiler, so that the compiler has more
opportunity to perform optimization. Other
optimization techniques that cannot be
performed by the compiler were presented.

References

1 . Kernighan, Brian W.; Richie, Dennis M.,
The C Programming Language, 1978.

2. Stroustrup, Bjarne, The C++ Programming
Language, Third Edition, 1997.

3 . Cray Inc., Optimizing Code on the Cray
PVP, 1997.

4 . Thomas, Kevin, Cray X1 C/C++
Optimization (presentation slides), 2003.

