
SLIDE 1 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

C and C++ Programming
For the Vector Processor

Geir Johansen
May 14, 2003

SLIDE 2 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Discussion Topic

What the developer can do so that the C/C++
compiler has the best chance to optimize the
code
– Focus on compiler, not machine

– Specify optimizations that only programmer, and
not compiler, can perform

SLIDE 3 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

“Premature optimization is the root of all evil”

- Donald Knuth

• Setting the stage for optimization done by the
compiler

• Reduce time of performance analysis

SLIDE 4 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Not Discussed

• Specific Machine Optimizations
• Memory contention

• Cache usage

• Optimizations compiler can perform

• Performance analysis tools

SLIDE 5 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Cray/C++ System Software Usage
– Operating system

– System Libraries

» Exercises optimization features

– Open Source Software

Cray C/C++ Application Usage
– Proprietary Software

– New Development

– Not many ISV codes

SLIDE 6 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Cray C/C++ Compiler

• Standard C and C++ are same executable

• Components
– Edison Design Group (EDG) Frontend

– Kuck & Associates (KAI) Inliner

– PDGCS Backend

– Code Generator

SLIDE 7 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

“In the Cray compiler, it has always been
Fortran, Fortran, Fortran”

– -- Mountain View based manager of Cray C/C++,
January 1999

SLIDE 8 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

PDGCS

• Program Dependence Graph Compiling
System

• Performs optimization

• In development since Cray YMP

• Same code is used in Fortran compiler
– Leverage extensive development and testing

done to PDGCS for Fortran

SLIDE 9 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Sample of PDGCS Optimizations
» Reduction loops

» Loop fusing

» Loop unrolling

» Loop unwinding

» Loop interchange

» Loop splitting

» Pattern Matching

» Code Elimination

SLIDE 10 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Optimization Report Messages

• -h report=args argument
• i inlining optimizations

• m multistreaming optimizations

• s scalar optimizations

• t tasking optimizations

• v vector optimizations

• f Outputs messages to <filename>.V

• No listing feature for Cray C/C++

SLIDE 11 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Definition of Dataset

• Compiler creates code for all possible data

• Increasing information to compiler about data
improves optimization potential

• Fortran has advantage over C/C++

SLIDE 12 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Data Definitions

• location (aliasing)

• scope

• dimension

SLIDE 13 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Ambiguous Aliasing Issue

• Pointers heavily used in C/C++

• Pointers can create dependencies

• Compiler must be conservative in assuming
aliasing

SLIDE 14 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Loop not fully vectorized
Void pntr(int *a, int *b)
{
 int i;
 for (i=0;i<64;i++)
 b[i] = i * a[i];
}

• Possible data dependency between what a points
to and what b points to

• Safe vector length optimization

SLIDE 15 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Loop fully vectorized
void pntr(int * restrict a, int * restrict b)
{
 int i;
 for (i=0;i<64;i++)
 b[i] = i * a[i];
}

• restrict keyword implies a covenant between the
compiler and programmer that there is no data
dependencies for the pointer

SLIDE 16 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Scope of Pointers
• In previous slide, call to pntr could be further

refined to:
void pntr(const int * const restrict a, int * const restrict b)

• Indicates that value of pointers a and b would not
be altered

• The array a contains read-only data
• Doesn’t work for the loop:

 for (i=0;i<64;i++)
 *b++ = i * *a++

SLIDE 17 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Multiple Indirection

• More difficult for compiler to determine data
dependencies

• C++ notorious for multiple indirection

• Using restrict keyword will work, but …
– Time consuming

– Less readable code

SLIDE 18 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Multiple Indirection Solutions

• -h restrict=arg option
• f function parameters

• t C++ this pointer

• a All pointers

• Experiences show that optimal code is not
always generated with -h restrict option

• Used optimization directives to force
optimization (i.e. ivdep, concurrent)

SLIDE 19 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Memory Access of Multiple Indirection

• Multiple indirection is also costly in that more
memory accesses are needed to access data (one
possible memory access per level of indirection)

Example: A->B->*data

• Compiler will attempt to store variables in registers

• Reduce memory access of multiple indirection by:
– Pushing code to subroutine

– Using temporary variables

SLIDE 20 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Dimension of Dataset

• Knowing dimension of data increases
optimization potential

• If dimension < machine vector size, then can
perform shortloop vectorization

• Dimension assists with such optimizations
such as loop fusing, loop rolling, loop
interchange

SLIDE 21 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

VLAs

• VLAs (Variable Length Arrays) can be used
to define the dimension of a passed array
argument

• VLAs inform compiler that arrays are of
uniform length

• VLAs only supported in Cray Standard C, not
Cray C++

SLIDE 22 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

VLA example, part 1
void vla0(a,b,m,n)

int m;

int n;

float * restrict * restrict a;

float * restrict * restrict b;

{

 int i,j;

 for (j=0;j<m;j++)

 for (i=0;i<n;i++)

 b[j][i] = a[j][i];

}

SLIDE 23 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

VLA example, part 2
• Compiler is now able to collapse the loops:

void vla1(a,b,m,n)
int m;
int n;
float (* restrict a)[n];
float (* restrict b)[n];
{
 int i,j;
 for (j=0;j<m;j++)
 for (i=0;i<n;i++)
 b[j][i] = a[j][i];
}

SLIDE 24 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Eliminate Optimization Inhibitors

• Factors that prevent vectorization and
other optimization include:
– Subroutine calls

– Non-word data types

– Branches in and out of loops

– Data dependencies

SLIDE 25 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Subroutine Calls

• Push loops into subroutines

• Inlining
– -h inline command line option

– Inline #pragma directive

– C++ inline keyword

• Can only inline routines found in compilation
file and files that are included

SLIDE 26 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Non-word size data
• Non word size examples

• Characters (for the most part, compiler will vectorize loops with
chars)

• Bit-fields
• Structures not ending on a word boundary

• Possible solutions
• Copying data to word friendly data structure
• Add to data structure to align on word boundary

struct A { char c; int x;}

struct A { union u{char c; int i;}, int x;}

SLIDE 27 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

C++ Complex Data Type
• C++ Standard Library defines a complex

template class to operate on complex
numbers

• Performance can be increased by using the
Cray C complex intrinsic

• Copy C++ complex arrays to C complex array
• Perform calculations in C routine
• Copy resulting data Cray C complex arrays back to

C++ complex arrays

SLIDE 28 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Program Branches
• Place conditional exits at the very beginning

of the loop
• Past experiences has found that using C

“a?b:c” syntax assisted compiler in
optimization. Example:

if (cond)a[i]= x;
 else a[i] = y;
 Change to:
 a[i] = (cond)?x:y;

SLIDE 29 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Data Dependencies

• Use restricted pointers, const, and VLAa

• Use compiler directives
– ivdep ignore vector dependencies

– concurrent use for multistreaming

• Use more aggressive compiler optimization options
– Tradeoff of higher optimization is increased compilation

time

– Possible incorrect results

SLIDE 30 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Compiler Optimization Options
• Cray X1 has the –h display_opt option that outputs

the optimization options the compiler is using.
• Exact optimization settings for default optimization

setting and -O[0,1,2,3] are subject to change
• Examples of optimizations that are performed at

higher optimization settings:
• Forward substitution
• Better dependence analysis
• Improved alias anaysis
• Loop splitting

SLIDE 31 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

C++ Optimization Tips

• Don’t use C++

SLIDE 32 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

C++ Optimization Tips

• No really, don’t use C++
• Many levels of indirection hurt optimization potential

• Member variables are accessed with a this pointer

SLIDE 33 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

C++ Optimization Tips
• Reduce Calls to Constructors/Destructors

• Use member initialization. For example instead of:
B(class A a) { x = a ; };

Use:

B(class A a) : x(a){};

• Declare temporary class variables outside of loop. In following
example constructor and destructor called every loop iteration

for (i=0;i<N;i++) {

class A tmp;
tmp = a;
a = b;
b = tmp;

}

SLIDE 34 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

C++ Optimization Tips (cont.)

• Use Call by Reference
• Passed arguments do not need to be copied as they

are in call by value

• Use C routines for computative intensive
portions of the program

• Cray C++ version of C++ Standard
Library not fully optimized

SLIDE 35 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

C++ Optimization Tips

• Take Advantage of inlining
• Member functions declared within a Class definition

are automatically inlined

• Use inline keyword to inline functions other member
functions

• Place class member functions inside header (.h) files
instead files of corresponding source (.C, .cc) files

SLIDE 36 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Linked List Example

Pointer chasing caused by linked lists
list_t *p;

for (p=top;p != 0;p=p->next) {

 p->a = p->a * x;

}

Each iteration of the loop requires the pointer value
from the prior iteration, neutralizing optimization
such as unrolling, software pipelining, vectorization,
and streaming

SLIDE 37 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Linked list alternative 1

After building the list, create an index array

 lit_t *list = malloc(n*sizeof(list_t *));

 int n = 0;

for (p=top;p!=0;p=p->next) {

 list[n++] = p

 }

List nodes can now be accessed via list array
for (i=0;i<n;i++) {

 list[i].a = list[i].a*x;

 }

SLIDE 38 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Linked list alternative 2

Use an expanding array of structs

struct list *new_node(void) {

 if (count >= max) {

max += 10000;

list = realloc(list,max*sizeof(struct list));

 }

 return &list[count++];

}

SLIDE 39 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Compiler Optimization Opportunities

• Better optimization when restrict pointers are
used

• Inlining from another C/C++ source (and
binary) file

• Better listing information

• Optimize C++ Standard Library

SLIDE 40 Geir Johansen
CUG 2003 / Columbus, Ohio, USAMay 13, 2003

Nuggets
• Use restricted pointers to reduce ambiguous

aliasing
• Use of VLAs in routines can improve

performance
• Avoid C++
• If using C++, be sure to inline

