s CRAY USER G

L TR TE RN S 0 T

C and C++ Programming
For the Vector Processor

Geir Johansen
May 14, 2003

SLIDE 1
| cuG 2003/ Columbus, Ohio, USA

- The 45th CUG Conference

(NETEEXET |

G

Discussion Topic

What the developer can do so that the C/C++
compiler has the best chance to optimize the
code

— Focus on compiler, not machine

— Specify optimizations that only programmer, and
not compiler, can perform

May 13, 2003

. covsescuour 88
Mg gy ——y——

“Premature optimization is the root of all evil”
- Donald Knuth

» Setting the stage for optimization done by the
compiler

» Reduce time of performance analysis

SLIDE 3
| cuG 2003/ Columbus, Ohio, USA

ELICHTETOINSIGHT
13 D SE-T, S SN, HEE

f " CRAY USER GROUP & &
Not Discussed

» Specific Machine Optimizations
 Memory contention
« Cache usage

» Optimizations compiler can perform
* Performance analysis tools

SLIDE 4
| cuG 2003/ Columbus, Ohio, USA

5‘: mm:wm

F.i B G-, S o SN, R

Cray/C++ System Software Usage
— Operating system
— System Libraries
» Exercises optimization features
— Open Source Software

Cray C/C++ Application Usage
— Proprietary Software

— New Development
— Not many ISV codes

SLIDE 5
| cuG 2003/ Columbus, Ohio, USA

- The 45th CUC Conference

(NETEEXET |

G

Cray C/C++ Compiler
 Standard C and C++ are same executable

 Components
— Edison Design Group (EDG) Frontend
— Kuck & Associates (KAI) Inliner
— PDGCS Backend
— Code Generator

May 13, 2003

. cRAY USER GRoUP 18R
"'i' B TR, S ST,

“In the Cray compiler, it has always been
Fortran, Fortran, Fortran”

— -- Mountain View based manager of Cray C/C++,
January 1999

SLIDE 7
| cuG 2003/ Columbus, Ohio, USA

PDGCS

Program Dependence Graph Compiling
System

Performs optimization
In development since Cray YMP

Same code is used in Fortran compiler

— Leverage extensive development and testing
done to PDGCS for Fortran

May 13, 2003

5‘: mm:uﬂm

M Y USRS SRR, G

Sample of PDGCS Optimizations

» Reduction loops
» Loop fusing

» Loop unrolling

» Loop unwinding
» Loop interchange
» Loop splitting

» Pattern Matching
» Code Elimination

SLIDE 9
| cuG 2003/ Columbus, Ohio, USA

The 45th CUG Conference

‘" CRAY USER GROUP &

BEEET,, |

Optimization Report Messages

e -h report =args argument

3

w

~

[]
<

Inlining optimizations
multistreaming optimizations

scalar optimizations

tasking optimizations

vector optimizations

Outputs messages to <filename>.V

* No listing feature for Cray C/C++

May 13, 2003

The 45th CUG Conference

% cray usR croup 5 ey
'-J‘L - e ————

Definition of Dataset
« Compiler creates code for all possible data

* Increasing information to compiler about data
Improves optimization potential

* Fortran has advantage over C/C++

May 13, 2003

. The 45th UG Conference
% criY USER .-
“.!.I'"

s B G-, S o SN, R

Data Definitions

. location (aliasing)
. scope
. dimension

| cuG 2003/ Columbus, Ohio, USA

. covsescuour 88
Mg gy ——y——

Ambiguous Aliasing Issue
» Pointers heavily used in C/C++
* Pointers can create dependencies

» Compiler must be conservative in assuming
aliasing

SLIDE 13
| cuG 2003/ Columbus, Ohio, USA

. covsescuour 88

e B G-, S o SN, R

Loop not fully vectorized
Void pntr(int *a, int *b)
{
Nt i;
for (1=0;1<64;i++)
b[i] =1 * alil;

}

* Possible data dependency between what a points
to and what b points to

o Safe vector Ien= th o:timization
Geir Johansen

| cuG 2003/ Columbus, Ohio, USA

ELTGH AT OIS G HT,
F.i_ B G-, S o SN, R

E CRAY USER CROUP & 08

Loop fully vectorized
void pntr(int * restrict a, int * restrict b)

{

Nt i;
for (1=0;i<64;i++)
b[i] =1*ali];
}

 restrict keyword implies a covenant between the
compiler and programmer that there is no data
dependencies for the pointer

SLIDE 15
| cuG 2003/ Columbus, Ohio, USA

The 45th CUG Conference

EHM‘ I.IEEH EHHUPE {]SEj

Gl Di-1H, SR STIATLED

Scope of Pointers

* |n previous slide, call to pntr could be further

refined to:
void pntr(const int * const restrict a, int * const restrict b)

 |ndicates that value of pointers a and b would not
be altered

* The array a contains read-only data
* Doesn’t work for the loop:
for (i=0;i<64;i++)
*h++ = | * *a++

May 13, 2003

- The 45th CUC Conference

(NETEEXET |

G

Multiple Indirection

* More difficult for compiler to determine data
dependencies

« C++ notorious for multiple indirection

» Using restrict keyword will work, but ...
— Time consuming
— Less readable code

May 13, 2003

The 45th CUG Conference

r.mw I.IEEH ERHUPE {]SEj

Lily D10, SR = L [T

Multiple Indirection Solutions

-h restrict=arg option
o f function parameters
et C++ this pointer
e a All pointers

Experiences show that optimal code is not
always generated with -h restrict option

Used optimization directives to force
optimization (i.e. ivdep, concurrent)

May 13, 2003

The 45th CUG Conference

EHM‘ I.IEEH EHHUPE DSEJ

Gl DR-10, SR = L [T

Memory Access of Multiple Indirection

* Multiple indirection is also costly in that more
memory accesses are needed to access data (one
possible memory access per level of indirection)

Example: A->B->*data

Compiler will attempt to store variables in registers

 Reduce memory access of multiple indirection by:
— Pushing code to subroutine
— Using temporary variables

May 13, 2003

(NETEEXET |

J‘L S QST SN TiLlil

Dimension of Dataset
* Knowing dimension of data increases
optimization potential
* |f dimension < machine vector size, then can
perform shortloop vectorization

* Dimension assists with such optimizations
such as loop fusing, loop rolling, loop
interchange

May 13, 2003

VLAS

* VLAs (Variable Length Arrays) can be used
to define the dimension of a passed array
argument

* VLAs inform compiler that arrays are of
uniform length

* VLASs only supported in Cray Standard C, not
Cray C++

May 13, 2003

. The 45th UG Conference
% criY USER --
“.!.I'"

i D SE-T, S SN, HEE

VLA example, part 1

void vlaO(a,b,m,n)
int m;
Int n;
float * restrict * restrict a;
float * restrict * restrict b;
{
int i,j;
for (J=0;j<m;j++)
for (i=0;i<n;i++)

bj][i] = ap][i];

SLIDE 22

| cuG 2003/ Columbus, Ohio, USA

. The 45th CUC Conference
& crayUSER |

S e ——— T

VLA example, part 2

« Compiler is now able to collapse the loops:
void vlal(a,b,m,n)
Int m;

Int n;
float (* restrict a)[n];
float (* restrict b)[n];
{
int i,j;
for (j=0;j<m;j++)
for (i=0;i<n;i++)
b[j](1] = ab]ii;
}

SLIDE 23
| cuG 2003/ Columbus, Ohio, USA

- The 45th CUC Conference

(NETEEXET |

G

Eliminate Optimization Inhibitors

. Factors that prevent vectorization and
other optimization include:
— Subroutine calls
— Non-word data types
— Branches in and out of loops
— Data dependencies

May 13, 2003

% coirusee croup s

Subroutine Calls
* Push loops into subroutines
* Inlining
— -h inline command line option

— Inline #pragma directive
— C++ inline keyword

« Can only inline routines found in compilation
file and files that are included

May 13, 2003

E CRA

F.i B G-, S o SN, R

Non-word size data

. Non word size examples

» Characters (for the most part, compiler will vectorize loops with
chars)

« Bit-fields
« Structures not ending on a word boundary

. Possible solutions
« Copying data to word friendly data structure
» Add to data structure to align on word boundary

struct A { char c; int X;}
struct A { union u{char c; int i;}, int x;}

SLIDE 26
| cuG 2003/ Columbus, Ohio, USA

% cray usR croup 5 ey
'-J‘L e ————

C++ Complex Data Type

« C++ Standard Library defines a complex
template class to operate on complex
numbers

* Performance can be increased by using the

Cray C complex intrinsic
« Copy C++ complex arrays to C complex array
« Perform calculations in C routine

« Copy resulting data Cray C complex arrays back to
C++ complex arrays

May 13, 2003

Program Branches

* Place conditional exits at the very beginning
of the loop

» Past experiences has found that using C
“a”?b:.c” syntax assisted compiler in
optimization. Example:

If (cond)a]i]= x;
else afi] =y;
Change to:
ali] = (cond)?x:y;

May 13, 2003

The 45th CUG Conference

r.mw I.IEEH ERHUPE {]SEj

Lily D10, SR = L [T

Data Dependencies
» Use restricted pointers, const, and VLAa

« Use compiler directives
— Ivdep ignore vector dependencies

— concurrent use for multistreaming

« Use more aggressive compiler optimization options

— Tradeoff of higher optimization is increased compilation
time
— Possible incorrect results

May 13, 2003

- The 45th CUG Conference

(NETEEXET |

%,
Compiler Optimization Options

* Cray X1 has the —h display_opt option that outputs
the optimization options the compiler is using.

« Exact optimization settings for default optimization
setting and -0]0,1,2,3] are subject to change

« Examples of optimizations that are performed at
higher optimization settings:
* Forward substitution
» Better dependence analysis
* Improved alias anaysis
« Loop splitting

May 13, 2003

C++ Optimization Tips

. Don’t use C++

SLIDE 31
| cuG 2003/ Columbus, Ohio, USA

. cRAY USER GRoUP 18R
"'i' B TR, S ST,

C++ Optimization Tips

. No really, don’'t use C++
* Many levels of indirection hurt optimization potential
 Member variables are accessed with a this pointer

SLIDE 32
| cuG 2003/ Columbus, Ohio, USA

5‘: mm:uum

C++ Optimization Tips

. Reduce Calls to Constructors/Destructors

« Use member initialization. For example instead of:

B(class Aa){x=a;}
Use:

B(class A a) : x(a){};

» Declare temporary class variables outside of loop. In following
example constructor and destructor called every loop iteration

for (i=0;i<N;i++) {
class A tmp;
tmp = a;
a=nDb;
b =tmp;

}
SLIDE 33
| cuG 2003/ Columbus, Ohio, USA

% cray usR croup 5 ey
'-J‘L e ————

Gl DR-10, SR dilsl

C++ Optimization Tips (cont.)

. Use Call by Reference

» Passed arguments do not need to be copied as they
are in call by value

. Use C routines for computative intensive
portions of the program

. Cray C++ version of C++ Standard
Library not fully optimized

May 13, 2003

% cray usR croup 5 ey
"'J‘L I g P (|

C++ Optimization Tips

Take Advantage of inlining

« Member functions declared within a Class definition
are automatically inlined

« Use inline keyword to inline functions other member
functions

 Place class member functions inside header (.h) files
instead files of corresponding source (.C, .cc) files

May 13, 2003

The 45th CUG Conference

EHM‘ I.IEEH EHHUPE {]SEj

Gl Di-1H, SR STIATLED

Linked List Example

Pointer chasing caused by linked lists
list_t *p;
for (p=top;p != O;p=p->next) {
p->a = p->a* X;

Each iteration of the loop requires the pointer value
from the prior iteration, neutralizing optimization
such as unrolling, software pipelining, vectorization,
and streaming

May 13, 2003

(AU ARER 1) (R
s Y DN~ SR ST,

9. CRAY USER CROUP & J08

Linked list alternative 1
After building the list, create an index array

lit_t *list = malloc(n*sizeof(list_t *));

intn=0;
for (p=top;p!=0;p=p->next) {
listin++] = p
}

List nodes can now be accessed via list array
for (i=0;i<n;i++) {
list[i].a = list[i].a*x;

mmﬁ—
| cuG 2003/ Columbus, Ohio, USA

. cRAY USER GRoUP 18R
"'i' B TR, S ST,

Linked list alternative 2
Use an expanding array of structs

struct list *new_node(void) {
if (count >= max) {
max += 10000;
list = realloc(list,max*sizeof(struct list));

}

return &listfcount++];

}

SLIDE 38
| cuG 2003/ Columbus, Ohio, USA

Compiler Optimization Opportunities

» Better optimization when restrict pointers are
used

* Inlining from another C/C++ source (and
binary) file

» Better listing information
* Optimize C++ Standard Library

May 13, 2003

. covsescuour 88
Mg gy ——y——

Nuggets
» Use restricted pointers to reduce ambiguous
aliasing
* Use of VLASs in routines can improve
performance
* Avoid C++

 If using C++, be sure to inline

SLIDE 40
| cuG 2003/ Columbus, Ohio, USA

