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Discussion Topic

What the developer can do so that the C/C++
compiler has the best chance to optimize the
code

— Focus on compiler, not machine

— Specify optimizations that only programmer, and
not compiler, can perform
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“Premature optimization is the root of all evil”
- Donald Knuth

» Setting the stage for optimization done by the
compiler

» Reduce time of performance analysis
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Not Discussed

» Specific Machine Optimizations
 Memory contention
« Cache usage

» Optimizations compiler can perform
* Performance analysis tools
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Cray/C++ System Software Usage
— Operating system
— System Libraries
» Exercises optimization features
— Open Source Software

Cray C/C++ Application Usage
— Proprietary Software

— New Development
— Not many ISV codes

SLIDE 5
| cuG 2003/ Columbus, Ohio, USA



- The 45th CUC Conference

(NETEEXET |

G

Cray C/C++ Compiler
 Standard C and C++ are same executable

 Components
— Edison Design Group (EDG) Frontend
— Kuck & Associates (KAI) Inliner
— PDGCS Backend
— Code Generator
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“In the Cray compiler, it has always been
Fortran, Fortran, Fortran”

— -- Mountain View based manager of Cray C/C++,
January 1999

SLIDE 7
| cuG 2003/ Columbus, Ohio, USA



PDGCS

Program Dependence Graph Compiling
System

Performs optimization
In development since Cray YMP

Same code is used in Fortran compiler

— Leverage extensive development and testing
done to PDGCS for Fortran
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Sample of PDGCS Optimizations

» Reduction loops
» Loop fusing

» Loop unrolling

» Loop unwinding
» Loop interchange
» Loop splitting

» Pattern Matching
» Code Elimination
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Optimization Report Messages

e -h report =args argument
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Inlining optimizations
multistreaming optimizations

scalar optimizations

tasking optimizations

vector optimizations

Outputs messages to <filename>.V

* No listing feature for Cray C/C++

May 13, 2003
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Definition of Dataset
« Compiler creates code for all possible data

* Increasing information to compiler about data
Improves optimization potential

* Fortran has advantage over C/C++
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Data Definitions

. location (aliasing)
. scope
. dimension
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Ambiguous Aliasing Issue
» Pointers heavily used in C/C++
* Pointers can create dependencies

» Compiler must be conservative in assuming
aliasing
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Loop not fully vectorized
Void pntr(int *a, int *b)
{
Nt i;
for (1=0;1<64;i++)
b[i] =1 * alil;

}

* Possible data dependency between what a points
to and what b points to

o Safe vector Ien= th o:timization
Geir Johansen
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Loop fully vectorized
void pntr(int * restrict a, int * restrict b)

{

Nt i;
for (1=0;i<64;i++)
b[i] =1*ali];
}

 restrict keyword implies a covenant between the
compiler and programmer that there is no data
dependencies for the pointer
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Scope of Pointers

* |n previous slide, call to pntr could be further

refined to:
void pntr(const int * const restrict a, int * const restrict b)

 |ndicates that value of pointers a and b would not
be altered

* The array a contains read-only data
* Doesn’t work for the loop:
for (i=0;i<64;i++)
*h++ = | * *a++
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Multiple Indirection

* More difficult for compiler to determine data
dependencies

« C++ notorious for multiple indirection

» Using restrict keyword will work, but ...
— Time consuming
— Less readable code

May 13, 2003
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Multiple Indirection Solutions

-h restrict=arg option
o f function parameters
et C++ this pointer
e a All pointers

Experiences show that optimal code is not
always generated with -h restrict option

Used optimization directives to force
optimization (i.e. ivdep, concurrent)

May 13, 2003
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Memory Access of Multiple Indirection

* Multiple indirection is also costly in that more
memory accesses are needed to access data (one
possible memory access per level of indirection)

Example: A->B->*data

Compiler will attempt to store variables in registers

 Reduce memory access of multiple indirection by:
— Pushing code to subroutine
— Using temporary variables
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Dimension of Dataset
* Knowing dimension of data increases
optimization potential
* |f dimension < machine vector size, then can
perform shortloop vectorization

* Dimension assists with such optimizations
such as loop fusing, loop rolling, loop
interchange
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VLAS

* VLAs (Variable Length Arrays) can be used
to define the dimension of a passed array
argument

* VLAs inform compiler that arrays are of
uniform length

* VLASs only supported in Cray Standard C, not
Cray C++
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VLA example, part 1

void vlaO(a,b,m,n)
int m;
Int n;
float * restrict * restrict a;
float * restrict * restrict b;
{
int i,j;
for (J=0;j<m;j++)
for (i=0;i<n;i++)

bj][i] = ap][i];
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VLA example, part 2

« Compiler is now able to collapse the loops:
void vlal(a,b,m,n)
Int m;

Int n;
float (* restrict a)[n];
float (* restrict b)[n];
{
int i,j;
for (j=0;j<m;j++)
for (i=0;i<n;i++)
b[j](1] = ab]ii;
}
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Eliminate Optimization Inhibitors

. Factors that prevent vectorization and
other optimization include:
— Subroutine calls
— Non-word data types
— Branches in and out of loops
— Data dependencies
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Subroutine Calls
* Push loops into subroutines
* Inlining
— -h inline command line option

— Inline #pragma directive
— C++ inline keyword

« Can only inline routines found in compilation
file and files that are included
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Non-word size data

. Non word size examples

» Characters (for the most part, compiler will vectorize loops with
chars)

« Bit-fields
« Structures not ending on a word boundary

. Possible solutions
« Copying data to word friendly data structure
» Add to data structure to align on word boundary

struct A { char c; int X;}
struct A { union u{char c; int i;}, int x;}
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C++ Complex Data Type

« C++ Standard Library defines a complex
template class to operate on complex
numbers

* Performance can be increased by using the

Cray C complex intrinsic
« Copy C++ complex arrays to C complex array
« Perform calculations in C routine

« Copy resulting data Cray C complex arrays back to
C++ complex arrays
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Program Branches

* Place conditional exits at the very beginning
of the loop

» Past experiences has found that using C
“a”?b:.c” syntax assisted compiler in
optimization. Example:

If (cond)a]i]= x;
else afi] =y;
Change to:
ali] = (cond)?x:y;

May 13, 2003
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Data Dependencies
» Use restricted pointers, const, and VLAa

« Use compiler directives
— Ivdep ignore vector dependencies

— concurrent use for multistreaming

« Use more aggressive compiler optimization options

— Tradeoff of higher optimization is increased compilation
time
— Possible incorrect results

May 13, 2003
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Compiler Optimization Options

* Cray X1 has the —h display_opt option that outputs
the optimization options the compiler is using.

« Exact optimization settings for default optimization
setting and -0]0,1,2,3] are subject to change

« Examples of optimizations that are performed at
higher optimization settings:
* Forward substitution
» Better dependence analysis
* Improved alias anaysis
« Loop splitting

May 13, 2003



C++ Optimization Tips

. Don’t use C++

SLIDE 31
| cuG 2003/ Columbus, Ohio, USA



. cRAY USER GRoUP 18R
"'i' B TR, S ST,

C++ Optimization Tips

. No really, don’'t use C++
* Many levels of indirection hurt optimization potential
 Member variables are accessed with a this pointer
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C++ Optimization Tips

. Reduce Calls to Constructors/Destructors

« Use member initialization. For example instead of:

B(class Aa){x=a;}
Use:

B(class A a) : x(a){};

» Declare temporary class variables outside of loop. In following
example constructor and destructor called every loop iteration

for (i=0;i<N;i++) {
class A tmp;
tmp = a;
a=nDb;
b =tmp;

}
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C++ Optimization Tips (cont.)

. Use Call by Reference

» Passed arguments do not need to be copied as they
are in call by value

. Use C routines for computative intensive
portions of the program

. Cray C++ version of C++ Standard
Library not fully optimized

May 13, 2003
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C++ Optimization Tips

Take Advantage of inlining

« Member functions declared within a Class definition
are automatically inlined

« Use inline keyword to inline functions other member
functions

 Place class member functions inside header (.h) files
instead files of corresponding source (.C, .cc) files

May 13, 2003
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Linked List Example

Pointer chasing caused by linked lists
list_t *p;
for (p=top;p != O;p=p->next) {
p->a = p->a* X;

Each iteration of the loop requires the pointer value
from the prior iteration, neutralizing optimization
such as unrolling, software pipelining, vectorization,
and streaming
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Linked list alternative 1
After building the list, create an index array

lit_t *list = malloc(n*sizeof(list_t *));

intn=0;
for (p=top;p!=0;p=p->next) {
listin++] = p
}

List nodes can now be accessed via list array
for (i=0;i<n;i++) {
list[i].a = list[i].a*x;
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Linked list alternative 2
Use an expanding array of structs

struct list *new_node(void) {
if (count >= max) {
max += 10000;
list = realloc(list,max*sizeof(struct list));

}

return &listfcount++];

}
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Compiler Optimization Opportunities

» Better optimization when restrict pointers are
used

* Inlining from another C/C++ source (and
binary) file

» Better listing information
* Optimize C++ Standard Library

May 13, 2003



. covsescuour 88
Mg gy ——y——

Nuggets
» Use restricted pointers to reduce ambiguous
aliasing
* Use of VLASs in routines can improve
performance
* Avoid C++

 If using C++, be sure to inline
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