
 1

Computational Fluid Dynamics Applications on the Cray X1 Architecture: Experiences,
Algorithms, and Performance Analysis

Andrew A. Johnson

Army HPC Research Center / Network Computing Services, Inc.
Minneapolis, Minnesota

ajohn@ahpcrc.org

April 21, 2003

ABSTRACT

We present our experiences and performance
results of our in-house computational fluid
dynamics (CFD) codes on the new Cray X1
parallel/vector/multi-streaming architecture.
These codes which solve the time-accurate
incompressible Navier-Stokes equations are fully
implicit (i.e. a coupled equation system is solved),
finite element based, and are built for fully
unstructured meshes. The codes are fully parallel
based on MPI, incorporating mesh partitioning
strategies, and include a GMRES-based iterative
equation solver for both matrix-free and sparse-
matrix operational modes. Throughout the
development of these CFD codes at the Army
HPC Research Center, vectorization has never
been applied, so new vectorization strategies and
additional algorithms that were required to
achieve optimal vector and multi-streaming
performance on the Cray X1 will be discussed.

We also present a detailed analysis of the
performance of this CFD code on the Cray X1
including comparisons with other parallel
architectures such as the Cray T3E-1200, as well
as raw Giga-Flop rates of various parts of the
code. Various factors that may effect the
performance of the code on the X1 will be
identified. Parallel scalability of the code, as well
as inter-processor communication performance,
will also be presented.

INTRODUCTION

The Army High Performance Computing (HPC)
Research Center (AHPCRC) is the first non-
classified site to take shipment of a Cray X1
system. The Cray X1 is a new computing
architecture built to deliver high sustained

computational performance for a variety of
important numerical simulation and computational
modeling applications. The AHPCRC’s
infrastructure support and system integration
contractor NetworkCS, Inc. took shipment of two
early-production (EP) air-cooled (AC) systems in
September, 2002. Each of these systems contains
16 multi-streaming processors (MSP). A
production liquid-cooled (LC) system was
installed in February, 2003 (see Figure 1).

Figure 1. Cray technicians installing a portion of
the AHPCRC's liquid-cooled X1 system at
NetworkCS, Inc. (Minneapolis, MN) on February
20, 2003.

This initial system contains a half populated LC
cabinet containing a total of 32 processors. This
existing cabinet will be fully populated (i.e.
expanded to 64 processors), as well as the
addition of another fully-populated LC cabinet, in
stages throughout the first half of 2003 to
ultimately create an X1 system with a total of 128
processors. The systems are owned by the U.S.
Army, but acquired, maintained and operated by
NetworkCS, Inc. for use by AHPCRC and DOD
researchers (see Figure 2). Both the two AC EP
systems, as well as this initial LC system, have
passed acceptance tests.

 2

Figure 2. The AHPCRC’s liquid-cooled Cray X1
after instillation at NetworkCS, Inc.

This new Cray X1 system is the AHPCRC’s third
large-scale HPC architecture. The center’s first
HPC system was an 896 processor Thinking
Machines CM-5 (Serial Number 1) that was
delivered in 1991 and was retired in 1998. The
center’s second large HPC system is an 1,088
processor Cray T3E-1200 which is still in
operation and heavily used by AHPCRC and
DOD researchers. This system was installed in
1998. It is expected that the new Cray X1
systems will also be heavily used and augment the
numerical simulation and computational modeling
capabilities of AHPCRC, Army, and DOD
researchers.

The AHPCRC and U.S. Army are targeting
research on critical defense applications for the
center’s Cray X1 such as computational weather
modeling and forecasting using applications such
as MM5 (see [1]), computational fluid dynamics
(CFD) research to be used, in part, to study
contaminant dispersion within urban
environments [2] as shown in Figure 3,
computational solid mechanics simulations such
as the prediction of projectile/armor interactions
[3,4], as well as computational chemistry and
some other areas such as electromagnetics. Good
performance for these targeted applications on the
Cray X1 will allow AHPCRC and Army
researchers to perform larger, more detailed, and

more accurate numerical simulations in shorter
periods of time that what is currently possible on
existing systems. Work is already underway on
the AHPCRC’s X1 in most of these areas, and the
specific topic of computational fluid dynamics
performance on the X1 is the focus of this paper.

Figure 3. Numerical simulation of contaminant
dispersion in Atlanta, GA. Shown is a volume
rendering of contaminant concentration.
Simulation performed by S. Aliabadi (AHPCRC-
Clark Atlanta University), and visualized by A.
Johnson (AHPCRC-NetworkCS, Inc.).

The porting and performance enhancement work
on the CFD codes discussed here will directly
apply to similar CFD codes used by our
AHPCRC-Clark Atlanta University partners, the
US Army Research Laboratory (ARL), the US
Army Engineering-Research and Development
Center (ERDC), and the US Army Natick
Research and Development Engineering Center
(Natick RDEC). These CFD codes are also
available to researchers at the US Army Military
Academy at West Point.

In the next section, details about the exact CFD
code being ported-to and tested-on the Cray X1
will be given, followed by an overview of the X1
architecture with a description of porting
experience and required code modifications to
achieve full vectorization / multi-streaming.
Following this are benchmark results including
both raw scalar (processor) performance, and
multi-processor scalability. We conclude with
some final observations about our early Cray X1
experiences.

 3

UNSTRUCTURED CFD CODE OVERVIEW

Several in-house computational fluid dynamics
codes have been developed at the AHPCRC
throughout its 13 year history. They all share
commonality in the fact that they are finite
element based, built for unstructured meshes, fully
stabilized using SUPG and PSPG methods [5,6],
time accurate, solve the resulting coupled
equation system with a GMRES-based iterative
solver [7], and are fully parallel based on MPI by
incorporating mesh partitioning techniques [8,9].
Some of these details will be explained further in
the following paragraphs. Initially, these CFD
codes have been developed within the data-
parallel programming model on the Thinking
Machines CM-5 [10], but have been subsequently
ported to the message-passing model based on
MPI which is portable to almost all HPC
architectures such as the Cray T3E and X1. It is
important that these codes run as fast and
efficiently as possible because CFD applications
such as these take up a significant percentage of
time on the AHPCRC’s current HPC systems.

The particular CFD code being tested here and
discussed throughout this paper is called
‘BenchC’ which is a trimmed-down version of a
more comprehensive CFD code which was used,
in part, to perform detailed numerical simulations
of fluid-particle applications [8,11]. This code
has been in use recently at the AHPCRC for
various benchmarking and testing purposes, is
written entirely in C, and has no external library
dependencies other than MPI. It is fairly
representative of most, if not all, finite-element
CFD codes in use at the AHPCRC. BenchC has
various built-in performance measurements such
as Mega-Flop rates, detailed timings of various
parts of the code including inter-processor
communication times, as well as memory usage
statistics. It is a fairly small code with a total of
6,700 lines.

BenchC solves the incompressible Navier-Stokes
equations that govern fluid motion for a variety of
systems such as aircraft aerodynamics (see Figure
9). The underlying numerical method is the finite
element method which can handle unstructured
meshes of any element type or even mixed
element type meshes, but in general, we

commonly use tetrahedral (4-nodded) element
meshes generated by our in-house automatic mesh
generator DMG [8,12]. Applications using
meshes containing anywhere between 1 million
and 5 million elements are common, although
some of our AHPCRC researchers are starting to
use meshes containing up to 40 million elements.
In an extreme benchmarking case, we have solved
an application on the Cray T3E-1200 with 1
billion tetrahedral elements (850 total equations)
using all 1056 processors [13].

BenchC is a time-accurate implicit flow solver, so
for each non-linear iteration of each time step, a
fully coupled equation system is solved. This
equation system solves for the velocity and
pressure variables at each nodal point of the mesh.
Traditionally, the left-hand-side sparse matrix and
the right-hand-side vector are formed based on
traditional finite-element numerical integration of
linear basis functions, and then the matrix is
inverted and multiplied with the right-hand-side
vector to generate the solution update. Because
the number of equations being solved are typically
in the 100s of thousands or millions, a direct
solver is far too computationally expensive, so
generally, iterative solvers are used. BenchC uses
a GMRES-based iterative solver with a diagonal
pre-conditioner. For a point of reference, in a
typical CFD application that we would perform,
anywhere between 100 to 2000 time steps are
computed, 4 non-linear iterations are typically
used for each time step, and roughly 20 GMRES
solver iterations are used to (approximately) solve
the equation system at each non-linear iteration.

With iterative solvers, the left-hand-side matrix
does not need to be inverted, but its influence is
required in the form of matrix-vector
multiplications. The GMRES iterative solver will
provide various vectors that are normally
multiplied with the “user provided” left-hand-side
matrix to form a resultant vector, which is then
used in the GMRES algorithm for its next
iteration. Most of our AHPCRC CFD codes,
including BenchC, use a different scheme called
matrix-free methods. Instead of forming and
storing the left-hand-side sparse matrix to be used
for matrix-vector multiplication, we form the
matrix-vector resultant vector directly whenever
required within the GMRES algorithm. We can

 4

do this since we know the exact formulation that
would have been used to create the left-hand-side
sparse matrix. While adding somewhat overall to
the number of calculations being performed, these
matrix-free codes use significantly less memory
since the left-hand-side matrix does not need to be
stored. The numerical results are exactly the same
with matrix-free methods as if we actually went
through a matrix-vector multiply procedure using
a left-hand-side sparse matrix.

These matrix-free methods were developed in the
early 90’s on the CM-5 [14], which as with most
systems in those days, had very low memory per
processor. The AHPCRC’s CM-5 had 32 Mega-
Bytes of memory per processor.

Because of BenchC’s usage of matrix-free
methods, roughly 70 percent of its time is spent
directly forming these matrix-vector resultant
vectors using traditional finite element formation
methods (i.e. numerical integrations of linear basis
functions). This part of the code is called the
‘Block’, and it is important that this routine runs
at optimal speeds. Another roughly 15 percent of
the time is spent in other GMRES routines that
typically includes vector dot-products, reductions,
scalar-vector multiplies, and other vector-based
linear algebra routines. Another 5 percent or so is
spent in another routine similar to Block, but is
used to form the initial diagonal pre-conditioner
and right-hand-side vector. The rest of the code’s
time is spent in general overhead, vector updates,
a few reductions, some I/O, and inter-processor
communication. For benchmarking, most I/O is
turned off. All floating point calculations in
BenchC are double-precision.

BenchC also has a sparse-matrix mode of
operation (as opposed to the matrix-free mode)
where the left-hand-side is formed and stored in a
sparse form, and a normal matrix-vector multiply
takes place within the GMRES iterative solver.
These other routines were also fully vectorized
and multi-streamed, but are not the focus of this
paper. Matrix-free operations are much more
common for the CFD codes at the AHPCRC, so
we chose to initially concentrate on those routines
for performance on the Cray X1.

The parallelism of BenchC (and all other
AHPCRC finite-element CFD codes) is based on
mesh partitioning and fast inter-processor
communication “gather and scatter” routines.
Basically, the given unstructured mesh is
partitioned into contiguous pieces using a mesh
partitioner, and a “mesh partition” is assigned to
each processor. Typically, each processor will be
assigned anywhere between 100 thousand to 1
million mesh elements. We generally use the
routines provided by ParMETIS [15,16] to
perform the mesh partitioning, but BenchC
actually uses its own built-in parallel Recursive
Center Bisection (RCB) algorithm to perform this
task. An example mesh partitioning provided by
ParMETIS (as seen on the surface of the mesh) is
shown in Figure 4.

Figure 4. The surface of an unstructured
tetrahedral element mesh of a tactical unmanned
aerial vehicle showing the processor assignments of
each mesh partition.

Once the mesh is distributed amongst the
processors in an optimal arrangement, inter
processor communication paths are built so that
mesh nodes, and on-processor node copies, can be
kept in sync by using the inter-processor
communication procedures. Inter-processor
communication is required at each GMRES
iteration in order to keep these mesh node
variables consistent. Due to the mesh partitioning
and efficient distribution, only variables at mesh
nodes that lie on partition boundaries need to be
transferred to the neighboring processors. Most
nodes (in many cases, 90 – 95 percent) lie in the
center of mesh partitions and therefore do not
need to be communicated amongst any other
processors. Also, due to the mesh partitioning,
the number of processor neighbors that each

 5

processor may need to communicate with maxes
out at around 15 – 20 other processors.

Very efficient non-blocking MPI communication
routines are used for the actual data transfers, and
these data transfer lists such as which processors
need to be communicated with, and how much
data is being sent to each processor, as well as the
allocation of internal data buffers used for
facilitating data transfers, are all set-up during the
pre-processing stages and do not need to be re-
computed during the actual numerical simulation
parts of the code. Typically, only a few
percentage of total execution time is spent
performing inter-processor communication, and
BenchC has built-in procedures to report these
timings. Pre-processing time is always excluded
from any performance timings.

It is expected that our parallel implementation and
communication routines are as efficient as
possible using MPI. Possibly using routines
provided by Unified Parallel C (UPC) or Co-
Array Fortran (CAF) could be even more efficient
on architectures that support distributed shared-
memory (i.e. globally addressable memory) such
as the Cray X1.

X1 ARCHITECTURE DESIGN FEATURES

The Cray X1 is an entirely new computer
architecture that combines both the scalability of a
distributed memory, multi-processor system with
the computational performance of a specially
designed processor (CPU) that incorporates both
multi-streaming and vector computing
capabilities. Some other features included a fast
inter-processor communication network, large
memory capacity, high memory-to-processor
bandwidth, and a global memory address space
(i.e. fully addressable by any processor). All
these features are combined in an integrated
system to provide a high level of computational
performance including a high overall peak
performance rate (12.8 Giga-Flops per processor,
double-precision) with a high sustained
computational capability (10% - 30% observed
sustained rates). This level of performance is
achieved if all (most) computations are fully
vectorized and multi-streamed. Scalar operations
on the Cray X1 processor do not perform at nearly

the same rates as the vector computing elements,
so any significant scalar computations will
degrade the overall performance on the Cray X1.

Some of the key Cray X1 hardware features that
are important to a user (see Appendix A) are the
actual Cray X1 cabinet, and there are two types.
The AC cabinet can hold up to 4 node boards,
while the LC cabinet can hold up to 16, 8 on each
side. Multiple cabinets can be combined together
to form larger systems. Each node board within a
cabinet holds 4 multi-streaming processors (MSP)
and memory. The AHPCRC’s X1 systems have
16 Gigia-Bytes of memory on each node board,
and that memory is shared by each MSP on the
board. Along with the MSPs and memory on each
node board, are I/O channels and controllers, as
well as the inter-processor network components
and controllers. The LC cabinet also includes 4
router boards to help facilitate the inter-processor
(inter-node) communications.

A MSP is the user-addressable computational unit
(i.e. processor) and has a peak floating point rate
of 12.8 Giga-Flops. For example, if a user
requests 4 processors with MPI (i.e. ‘mpirun –np
4 MY_Application’), they would get 4 MSPs,
probably on the same node board. The user is, in
general, responsible for breaking up their
application amongst MSPs, but in future
programming environment releases, OpenMP will
be available for single node board applications.

Each MSP contains 4 single-streaming processors
(SSP), and the compiler is (in general) responsible
for breaking up the work that gets assigned to the
MSP amongst its 4 SSPs. Also located on each
MSP are 4 cache memory chips. Each SSP has 2
vector registers (vector computing elements) and a
scalar computing element. The compiler is, again,
responsible for vectorizing the code that gets
assigned to each SSP.

To achieve efficiency on the Cray X1, the original
problem must be broken up into smaller and
smaller pieces of work, and then these smaller
pieces of work are performed in parallel. A
detailed schematic of this is shown in Appendix
A. A typical CFD problem is first broken up into
pieces using the mesh partitioning techniques
described in the previous section, and each mesh

 6

partition is assigned to a single MSP. The
communication routines within BenchC are
responsible for communication and coordination
amongst the MSPs through the X1’s interconnect
network. From this point on (i.e. computational
work is assigned to an MSP), the compiler takes
over and will try to multi-stream and vectorize all
loops. For optimal performance, most if not all
loops must multi-stream and vectorize. In
general, a long loop is both multi-streamed and
vectorized at the same time, but for shorter loops,
or loops embedded within other loops, the
compiler may try to multi-stream one loop (for
example, an outer loop) and vectorize another
loop (for example, an inner loop). The user can
have some control over this process by applying
compiler directives strategically.

PORTING AND CODE MODIFICATIONS

The porting of BenchC to the Cray X1 was a very
straightforward process. The initial port took less
than 1 hour and the code was running and
providing correct results within that time.
However, the code wasn’t fully vectorized and
multi-streamed initially so performance was
initially limited.

The compiler was able to fully vectorize and
multi-stream the routines within the GMRES part
of the code without any complications since, as
stated earlier, that part of the code contains simple
vector-based linear algebra routines, and no vector
dependencies exist within the loops. The Cray X1
compiler provides many useful loop markings and
reporting functions to specify which loops are
being vectorized and multi-streamed.

The main part of BenchC, as stated previously, is
the ‘Block’ routine where the code spends roughly
70% of its time. Block contains one single loop
with roughly 1000 double-precision floating point
operations per iteration, and the compiler couldn’t
initially vectorize or multi-stream this loop. A
pseudo-Fortran outline of Block is shown in
Appendix B, which is a very typical finite element
method loop. As can be seen, there is one main
loop where each iteration corresponds to a single
mesh element. Each tetrahedral element consists
of 4 mesh nodes, so initially, data associated with
these nodes (N1,N2,N3,N4) are “gathered” from

global node arrays. Examples of those lines of
code are highlighted in blue in Appendix B. After
all of the data for this particular element is
gathered, all of the calculations are performed
using these localized variables (highlighted in
green). Once the results are computed, the results
are “scattered” back into main memory for each of
the 4 mesh nodes of this particular element.
Examples of those lines are highlighted in red.
This main loop could not be vectorized or multi-
streamed because of this memory scattering
procedure at the end of the loop. The compiler
doesn’t have any information about what the 4
indexes N1,N2,N3,N4 could be, and it is possible
to generate errors in the results if any of these
indices are repeated during a vectorized or multi-
streamed loop. We do observe these errors in the
results if this looped is forced to be vectorized and
multi-streamed without any special modifications.

Our solution to this problem is to re-organize and
arrange the elements of the mesh (the ones
currently assigned to a particular MSP) into
groups. The only restriction we have on a group
of elements is that no two elements in a group can
be addressing the same node index (i.e. no
N1,N2,N3,N4 indices will repeat for a particular
element group). With help from David Whitaker
from Cray’s applications department, we built an
element grouping (sometimes called coloring)
routine to build these element groups during the
code’s pre-processing stage. The algorithm is
actually quite simple and does not take up much
extra time. Element groups are created to contain
as many mesh elements as possible, and large
element groups can be created. A few of the
groups pick-up remainder elements, and may have
only a few members.

For a typical problem on the X1 using
unstructured tetrahedral element meshes,
anywhere between 44 and 47 groups are formed.
This number of groups is determined internally by
the coloring algorithm, but is roughly proportional
to the number of mesh elements attached to each
mesh node. A typical distribution of the number
of elements in each group is shown in Figure 5.
Typically, anywhere between a few thousand to
tens of thousands of elements per group can be
created for most applications, and that directly
corresponds to the length of the vectorizable (and

 7

multi-streamable) loops. The “optimal” vector
size on the X1 is 64, add to that the 4 SSPs, to get
a size of 256. We have observed that larger
vector lengths perform better, so it is
recommended that the user try to build as long
vector lengths as possible.

0

2000

4000

6000

8000

10000

12000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Group Number

N
um

be
r o

f E
le

m
en

ts

Figure 5. Number of mesh elements in each
vectorized/multi-streamed group for a typical CFD
problem.

Once the element groups are formed in the pre-
processing stage, the Block loop shown in
Appendix B can be slightly modified by the
addition of an outer group loop, with the inner
element loop remaining fairly unchanged. Since
we now know that each element in a group
doesn’t have repeated node indices, we can force
full vectorization and multi-streaming of the inner
element loop by using a “CONCURRENT”
compiler directive. This compiler directive
replaces the more traditional “IVDEP” directive
seen in past Cray systems. A high level of
performance of the Block routine is now achieved
without introducing any errors due to the memory
scatter operations at the end. The loop performs
very well on the X1, also due in part to the fact
that each iteration contains roughly 1000 floating
point operations.

Within this main element loop, there are also a
few “IF” statements and square-roots, but the
Cray X1 vector processor has been designed to
support these features, so they had no effect on
vectorization or performance.

Of course, each processor (MSP) has been
assigned its own piece of the unstructured mesh,
so each processor performs is own element

grouping procedure independently. Even though
each processor gets assigned roughly the same
number of elements, each processor may have a
slightly different number of groups with slightly
different overall performance based on slight
differences in vector sizes. We have observed up
to 9% differences in overall run-time for the
Block routine on different MSPs. We believe that
some of these slight performance differences on
each MSP may be contributing somewhat to the
overall communication overhead (as described in
the following sections) since all processors must
by synchronized before a communication
procedure can take place.

The inclusion of this element grouping/coloring
scheme, as well as the slight modifications to the
Block routine as shown in Appendix B, was all
that was required to achieve full vectorization and
multi-streaming of the BenchC CFD code. The
MPI parallel set-up and communication parts of
BenchC required no changes.

PROCESSOR SPEED PERFORMANCE
ANALYSIS

For testing of BenchC on the Cray X1, we initially
selected 3 test cases. The “Small” data set
contains a mesh with 440 thousand tetrahedral
elements. The “Medium” data set mesh contains
roughly 2 million tetrahedral elements. The
“Large” data set mesh contains 4.3 million
tetrahedral elements. Our basis of comparison
was the performance of BenchC on the Cray T3E-
1200 which we have been using as our main HPC
system for the past 5 years. In the past, we have
performed many simulations, testing, analysis,
and optimization of these CFD codes on the T3E.
We also compared the performance to some other
popular HPC architectures. We initially chose to
test the code using 4, 8, and 12 processors
(MSPs), but have also performed X1 scalability
tests using up to 28 processors, as well as a 60
MSP test performed by Cray themselves on one of
their systems.

We measure run times for various parts of
BenchC including “Total” time, time spent in the
“Block” routine (see Appendix B), time spent in
the “GMRES” routine, and time spent performing
the inter-processor communication. Set-up time is

 8

not included in any of these measurements and is
a relatively small time compared to overall run
time.

We have calculated the exact number of floating
point operations in the Block routine, and from
that, we can derive a Mega-Flop rate for the Block
routine. These numbers are based on our own
counting, but the Block routine has been made
more and more efficient over the years so it would
be surprising if the compiler can find any
significant floating point operation improvements
on its own. Also, through comparisons of
performance of Block running on the X1 with
Block on the T3E, we get a Mega-Flop rate of
around 80 on a T3E processor which we know to
be fairly a accurate number, and through
extrapolation, we are confident about the Mega-
Flop rates we are counting on the X1. We hope to
confirm these rates by using Cray Performance
Analysis Tools (CrayPAT) in the near future.

The raw benchmark numbers of our 3 data sets on
4, 8, and 12 processors are given in Appendix C.
Overall, the performance on the X1 is roughly 42
times faster than the T3E, and the Block routine
itself is roughly 53 times faster, on a per-
processor basis. The “Block MF” row lists the
Mega-Flop rate, so for the Block routine, we
consistently are measuring roughly 4 Giga-Flops
per MSP, which is almost a third of peak
performance, and this number holds all the way
up to our largest test case which was run on 60
MSPs. On that many processors, Block was
running at a sustained rate of approximately 237
Giga-Flops. Overall (i.e. all of the counted
floating point operations divided by the total time)
is roughly 3 Giga-Flops per MSP.

The “GMRES” performance increases are not as
high as those in Block. The GMRES
vectorized/multi-streamed loops are very long, but
each iteration contains only one or two floating
point operations. We believe that the many
operations in each loop iteration of Block
contribute to its significant performance.

The percent of time spent performing
communication on the X1 is larger than on the
T3E. Even though we observe the inter-processor
communication on the X1 to be significantly

faster than on the T3E, for BenchC, it is not 42
times faster than on the T3E. Therefore,
communication is taking up a larger percentage of
total time.

Performance comparisons of BenchC to a SGI
Origin 3000 (MIPS 14000 at 500 MHz) and an
IBM sp690 SP (Power4 at 1.3 GHz) are also
provided in Appendix B for the Medium data set.
The Cray X1 shows significant better performance
than those two systems, on a per-processor basis.
The port to these other two systems was a fairly
straight port. Some time was spent trying to
optimize the Block routine on the IBM, but
performance of Block seemed to be fairly
insensitive to any code changes or re-structuring.

PARALLEL SCALABILITY AND
COMMUNICATION PERFORMANCE
ANALYSIS

Good scalability of BenchC on the X1 can be seen
in the tables of Appendix C, and we further tested
the scalability of the code all the way to our
system’s 28 processors (our half populated LC
cabinet contains 32 MSPs total, but 4 of them are
reserved for the command-node of the system).
Those results are shown in Figure 6. In this
figure, speed-up is measured based on the
performance of BenchC on 4 processors.

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Processors

Sp
ee

d-
U

p

Ideal Total Block GMRES Comm

Figure 6. Overall speed-up of the BenchC code for
runs using up to 28 processors (MSPs). Speed-ups
of various parts of BenchC are also shown. Speed-
ups are based on the performance on 4 processors.

 9

As can be seen in Figure 6, linear scalability is
observed for the Block routine, while overall
scalability is still quite good. The scalability of
the communication time, however, is flat since we
measured consistent communication time (actual
seconds) for all processor counts. A graph
showing the percentage of total run time spent in
the Block routine, the GMRES routine, and in
communication is provided in Figure 7.

0

10

20

30

40

50

60

70

80

4 6 8 10 12 14 16 18 20 22 24 26 28

Processors

Pe
rc

en
t o

f T
ot

al

% Block % GMRES % Comm

Figure 7. Percentages of time spent in various parts
of the BenchC code, for various runs using up to 28
processors (MSPs).

Again, since communication time is rather flat, for
larger processor jobs, the percentage of total time
spent in the Block routine comes down and
degrades our scalability somewhat.

Measuring communication time in BenchC is
somewhat difficult since a communication
procedure can not take place until all processors
are synchronized right after the Block routine is
called. As explained earlier, we believe that due
to the element blocking strategy, each processor
achieves slightly different performance through
the Block routine, and all processors must wait for
the slowest one before communication takes
place. This slight out-of-sync time we believe is
showing up in our communication measurements.
Some of our more detailed measurements of
communication time are showing this, since in
some measurements, less than one third of the
measured communication time is actually spent
performing communication. All other time is
spent (we believe) in processor synchronization.

In one of our Fortran CFD codes very similar to
BenchC, we have replaced the MPI-based
communication procedures with new routines
based on Co-Array Fortran (CAF). More detailed
timings of those routines show an almost
insignificant time spent performing actual
communication (i.e. for CAF, communication is
accomplished by references to global shared
arrays), but still, a larger actual time is measured
for communication which is due to the processor
synchronization time (roughly 3 to 5 percent of
our communication measurement is actually spent
transferring data within this specific CAF code).
With this more precise measurement of inter-
processor communication using the CAF code, we
see data transfer rates of around 2 to 3 Giga-Bytes
per second.

We plan to evaluate these communication
procedures, and processor synchronization times,
in more detail in the near further. We also plan to
add Unified Parallel C (UPC) constructs to the
BenchC code to measure its behavior for inter-
processor communication.

A test of BenchC on a Cray X1 system with 60
MSPs is shown in Figure 8. For that test, we saw
consistently 4 Giga-Flops per processor for the
Block routine, and the overall (Total) performance
is shown in Figure 8. Again, communication
times were rather flat and that limited overall
scalability for the higher processor counts. Due to
the overall speed of the X1, especially when using
up to 60 processors, we believe the problem size
(the Large data set test case) was too small and the
communication times began to dominate
performance.

 10

0

50

100

150

200

250

300

350

400

450

500

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Processors

Ti
m

e
(s

ec
on

ds
)

Comm Total

Figure 8. Overall run times, and time spent
performing inter-processor communication, for the
BenchC code using up to 60 processors (MSPs).

Finally, to test the largest application that we
could perform on our current 28-processor X1
system, we performed a CFD simulation using
BenchC for a test case containing 243 million
tetrahedral elements (see Figure 9). This mesh
contained roughly 41 million mesh nodes, with an
equation system of 160 million unknowns. This
example is of airflow past a cargo aircraft in a
take-off configuration, and was set-up based on a
model and mesh we used several years ago when
performing paratrooper/cargo aircraft interaction
studies [9]. The aircraft is at roughly 10 degrees
angle-of-attack, so large separation regions are
observed over the top of the wing. The image was
rendered on the AHPCRC’s Cray T3E-1200 using
350 processors with our Presto Visualizer’s
volume rendering capabilities [17,18]. A volume
rendering of velocity magnitude (blues are low
velocity, reds are high velocity) is shown in
Figure 9.

A mesh with 243 million elements was chosen
since this was, generally, the larges we could fit
into the memory of 28 MSPs. BenchC used
roughly 76.8 Giga-Bytes of memory for this
application. A total of 2,000 total time steps were
computed, with 4 non-linear iterations each time
step, and 15 GMRES iterations for each non-
linear iteration. Each data file written to disk (we
wrote a data file every other time step) is about
1.3 Giga-Bytes in size, and it takes roughly 10
Giga-Bytes to store the tetrahedral element mesh
itself.

We could compute a time step in approximately
every 3 minutes, and the Block routine ran at a
rate of 113.8 Giga-Flops (roughly 91.5 Giga-Flops
overall). We believe applications at this scale are
now becoming practical on systems such as the
Cray X1, since results can be obtained in only a
few days.

CONCLUSIONS

Over the last 6 months, we have been testing the
AHPCRC’s new Cray X1 for various numerical
simulation applications such as the unstructured
mesh CFD applications discussed in this paper.
Overall, the experience has been positive and the
X1 has performed very well for our unstructured
mesh CFD codes, achieving overall 43 time faster
performance compared to a Cray T3E on a per-
processor basis, with the main CFD kernel (i.e.
the Block routine) running at almost a third of
peak performance. Scalability on the X1 system
has also been very good.

We are the first non-classified site to receive this
new architecture, both new hardware and new
software, and while there were a few software and
OS problems that needed to be worked out, they
have been fixed fairly quickly and the X1 has
proven to be a very stable and productive
machine. We are ready to go forward with the
upgrades we will be receiving to the system (i.e.
the addition of more processors to form a system
with 128 MSPs) and begin to use the Cray X1 as
our main high-performance, high-capability
computing engine. The X1’s performance for
these CFD codes will be allowing AHPCRC and
Army researchers to perform larger, more
detailed, and ultimately, more accurate
simulations in shorter periods of time.

REFERENCES

1. T. Meys, “Modeling the weather on a Cray X1”,

Cray User Group Conference 2003 Proceedings,
May 2003.

2. S. Aliabadi, “Contaminant propagation in
battlespace environments and urban areas”,
AHPCRC Bulletin, Vol. 12, No. 4, 2001.

3. T. Holmquist, G. Johnson, “Response of silicon
carbide to high velocity impact”, Journal of

 11

Applied Physics, Vol. 91, No. 9 (2002), 5858-
5866.

4. G. Johnson, R. Stryk, S. Beissel, and T.
Holmquist, “An algorithm to automatically convert
distorted finite elements into meshless particles
during dynamic deformation”, International
Journal of Impact Engineering, Vol. 27 (2002),
997-1013.

5. T. Hughes, A. Brooks, “A multidimensional
upwind scheme with no crosswind diffusion”,
Finite-Element Methods for Convection-
Dominated Flows, Vol. 34 (1979), American Soc.
Mechanical Engineers, New York, 19-35.

6. T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson,
and S. Mittal, “Parallel finite-element
computations of 3D flows”, IEEE Computer, Vol.
26, No. 10 (1993), 27-36.

7. Y. Saad, M. Schultz, “GMRES: A generalized
minimum residual algorithm for solving non-
symmetric linear systems”, SIAM Journal of
Scientific and Statistical Computing, Vol. 7
(1986), 856-869.

8. A. Johnson, T. Tezduyar, “Parallel computation of
incompressible flows with complex geometries”,
International Journal for Numerical Methods in
Fluids, Vol. 24 (1997), 1321-1340.

9. T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, V.
Kalro, and M. Litke, “Flow simulation and high
performance computing”, Computational
Mechanics, Vol. 18 (1996), 397-412.

10. M. Behr, A. Johnson, J. Kennedy, S. Mittal, and T.
Tezduyar, “Computation of incompressible flows
with implicit finite element implementations on
the Connection Machine”, Computer Methods in
Applied Mechanics and Engineering, Vol. 108
(1993), 99-118.

11. A. Johnson, T. Tezduyar, “Methods for 3D
computation of fluid-object interactions in
spatially periodic flows”, Computer Methods in
Applied Mechanics and Engineering, Vol. 190
(2001), 3201-3221.

12. A. Johnson, T. Tezduyar, “Advanced mesh
generation and update methods for 3D flow
simulations”, Computational Mechanics, Vol. 23
(1999), 130-143.

13. S. Aliabadi, “Hydrodynamic simulations using an
unstructured mesh with 1 billion tetrahedral
elements”, AHPCRC Bulletin, Vol. 11, No. 1,
2001.

14. S. Aliabadi, T. Tezduyar, “Parallel fluid dynamics
computations in aerospace applications”,
International Journal for Numerical Methods in
Fluids, Vol. 21 (1995), 783-805.

15. G. Karypis, V. Kumar, “Parallel multi-level k-way
partitioning scheme for irregular graphs”, SIAM
Review, Vol. 41 (1999), 278-300.

16. G. Karypis, V. Kumar, “Metis 4.0: Unstructured
graph partitioning and sparse matrix ordering
systems”, Tech. Report, Department of Computer
Science, University of Minnesota, 1998, available
on the WWW at URL
http://www.cs.umn.edu/~metis.

17. A. Johnson, “Large scale scientific visualization
on Cray MPP architectures”, Cray User Group
Conference 2003 Proceedings, May 2003.

18. A. Johnson, Q. Quammen, “Presto Visualizer 2.0,
Parallel Scientific Visualization of Remote Data
Sets: User Guide”, Tech Report, Army HPC
Research Center / NetworkCS, Inc., 2002.

ACKNOWLEDGEMENT

The research reported in this document was
performed in connection with contract DAAD19-
03-D-0001 with the U.S. Army Research
Laboratory. The views and conclusions contained
in this document are those of the authors and
should not be interpreted as presenting the official
policies or positions, either expressed or implied,
of the U.S. Army Research Laboratory or the U.S.
Government unless so designated by other
authorized documents. Citation of manufacturer’s
or trade names does not constitute an official
endorsement or approval of the use thereof. The
U.S. Government is authorized to reproduce and
distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

 12

Figure 9. Large scale simulation of airflow past a cargo aircraft in a take-off configuration. Shown is a
volume-rendered image of velocity magnitude. Computed on the Cray X1 using 28 processors. The mesh
contains 243 million tetrahedral elements.

 13

APPENDIX A

Single X1 AC Cabinet

Multi-Streaming
Processor (MSP)

Single-Streaming
Processor (SSP)

Vector Computing
Element

MSP0 MSP1
MSP2

MSP3

MSP5
MSP15

MSP6

MSP4
MSP8MSP9MSP10

MSP11

MSP12

MSP13

MSP14

MSP7

MPI & Mesh
Partitioning

16 Processors

Multi-Streaming
(Compiler)

MSP 13

SSP0 SSP1

SSP3
SSP2

SSP 2

Results

Vectorization
(Compiler)

Work Disk

Single X1 AC Cabinet

Multi-Streaming
Processor (MSP)

Single-Streaming
Processor (SSP)

Vector Computing
Element

MSP0 MSP1
MSP2

MSP3

MSP5
MSP15

MSP6

MSP4
MSP8MSP9MSP10

MSP11

MSP12

MSP13

MSP14

MSP7

MPI & Mesh
Partitioning

16 Processors

Multi-Streaming
(Compiler)

MSP 13

SSP0 SSP1

SSP3
SSP2

SSP 2

Results

Vectorization
(Compiler)

Work Disk

Schematic of the major Cray X1 hardware components (left) along with a schematic on how a CFD
application will be mapped on to the associated X1 hardware. The CFD application is broken up into
smaller and smaller pieces until the actual vector computing elements can be engaged by a small sub-set
of the original application. Along with the vector computing elements (shown in yellow), other X1
components include the single-streaming processor (SSP) shown in green, the multi-streaming processor
(MSP) shown in red, the actual X1 node boards shown in light blue, and an actual X1 AC cabinet.
Memory chips (either main memory on the X1 node board, or cache memory on the MSP) are shown in
blue. The user’s application is responsible for splitting up the application amongst the MSPs, but the
compiler (in general) breaks up the problem amongst the SSPs and vector computing elements.

 14

APPENDIX B

 DO IG = 1, NUMBER_OF_GROUPS
 IG_BEG = GROUPS(IG)
 IG_END = GROUPS(IG+1)

 !DIR$ CONCURRENT
DO I = 1, NUMBER_OF_MESH_ELEMENTS DO I = IG_BEG, IG_END
 N1 = IEN(1, I) N1 = IEN(1, I)
 N2 = IEN(2, I) N2 = IEN(2, I)
 N3 = IEN(3, I) N3 = IEN(3, I)
 N4 = IEN(4, I) N4 = IEN(4, I)

 X1 = X(1, N1) X1 = X(1, N1)
 Y1 = X(2, N1) Y1 = X(2, N1)
 Z1 = X(3, N1) Z1 = X(3, N1)
 X2 = X(1, N2) X2 = X(1, N2)
 Y2 = X(2, N2) Y2 = X(2, N2)
 Z2 = X(3, N2) Z2 = X(3, N2)
 X3 = X(1, N3) X3 = X(1, N3)

 …SEVERAL MORE MEMORY “GATHER”… …SEVERAL MORE MEMORY “GATHER”…
 …STATEMENTS LIKE THESE… …STATEMENTS LIKE THESE…

 UI = SH01*U1 + SH02*U2 UI = SH01*U1 + SH02*U2
 + SH03*U3 + SH04*U4 + SH03*U3 + SH04*U4
 VI = SH01*V1 + SH02*V2 VI = SH01*V1 + SH02*V2
 + SH03*V3 + SH04*V4 + SH03*V3 + SH04*V4
 WI = SH01*W1 + SH02*W2 WI = SH01*W1 + SH02*W2
 + SH03*W3 + SH04*W4 + SH03*W3 + SH04*W4
 PI = SH01*P1 + SH02*P2 PI = SH01*P1 + SH02*P2
 + SH03*P3 + SH04*P4 + SH03*P3 + SH04*P4
 UXI = SHX1*U1 + SHX2*U2 UXI = SHX1*U1 + SHX2*U2
 + SHX3*U3 + SHX4*U4 + SHX3*U3 + SHX4*U4
 UYI = SHY1*U1 + SHY2*U2 UYI = SHY1*U1 + SHY2*U2
 + SHY3*U3 + SHY4*U4 + SHY3*U3 + SHY4*U4
 UZI = SHZ1*U1 + SHZ2*U2 UZI = SHZ1*U1 + SHZ2*U2
 + SHZ3*U3 + SHZ4*U4 + SHZ3*U3 + SHZ4*U4
 VXI = SHX1*V1 + SHX2*V2 VXI = SHX1*V1 + SHX2*V2
 + SHX3*V3 + SHX4*V4 + SHX3*V3 + SHX4*V4

 …ROUGHLY 1000 FLOATING POINT OPERAIONS… …ROUGHLY 1000 FLOATING POINT OPERATIONS…
 …PER ITERATION. A FEW IF STATEMENTS AND… …PER ITERATION. A FEW IF STATEMENTS AND…
 …A COUPLE SQURE ROOTS… …A COUPLE SQUARE ROOTS…

 RES(1, N1) = RES(1, N1) + RESULT_U1 RES(1, N1) = RES(1, N1) + RESULT_U1
 RES(2, N1) = RES(2, N1) + RESULT_V1 RES(2, N1) = RES(2, N1) + RESULT_V1
 RES(3, N1) = RES(3, N1) + RESULT_W1 RES(3, N1) = RES(3, N1) + RESULT_W1
 RES(4, N1) = RES(4, N1) + RESULT_P1 RES(4, N1) = RES(4, N1) + RESULT_P1
 RES(1, N2) = RES(1, N2) + RESULT_U2 RES(1, N2) = RES(1, N2) + RESULT_U2
 RES(2, N2) = RES(2, N2) + RESULT_V2 RES(2, N2) = RES(2, N2) + RESULT_V2
 RES(3, N2) = RES(3, N2) + RESULT_W2 RES(3, N2) = RES(3, N2) + RESULT_W2

 …SEVERAL MORE MEMORY “SCATTER”… …SEVERAL MORE MEMORY “SCATTER”…
 …STATEMENTS LIKE THESE… …STATEMENTS LIKE THESE…
ENDDO !…END OF ELEMENT LOOP ENDDO !…END OF ELEMENT GROUP LOOP

 ENDDO !…END OF GROUP LOOP

Pseudo-Fortran code of the main computational kernel for the CFD finite-element benchmark codes. The
original code is shown on the left while the slightly modified code that incorporates an element grouping
(coloring) strategy is shown on the right. The original code can not be vectorized or multi-streamed due
to the memory scatter operations highlighted in red. The inner element loop in the modified code on the
right can be fully vectorized and multi-streamed due to the element grouping strategy.

 15

APPENDIX C

T3E-1200 Production X1 Small Data Set
(0.44M Elements) Seconds Seconds Faster

4 CPU Block 3,537.0 66.5 53.2 x
Block MF 304.6 16,195.0 31.6% Peak

GMRES 360.5 16.4 22.0 x
Total 4,203.6 103.0 40.8 x

% Comm 1.0 7.1
8 CPU Block 1,749.0 31.3 55.9 x

Block MF 616.0 34,423.0 33.6% Peak
GMRES 188.8 9.9 19.1 x

Total 2,099.4 55.1 38.1 x
% Comm 1.2 14.0

12 CPU Block 1,133.7 22.1 51.3 x
Block MF 950.0 48,728.4 31.7 % Peak

GMRES 128.1 9.3 13.8 x
Total 1,376.6 44.3 31.1 x

% Comm 1.7 18.9

T3E-1200 SGI Origin IBM p690 SP Production X1 Medium Data Set
(2.0M Elements)

Seconds Seconds Seconds Seconds
Faster

T3E
Faster

SGI
Faster

IBM
4 CPU Block 3,997.7 2,049.7 1,164.2 76.0 52.6 x 27.0 x 15.3 x

Block MF 304.1 593.1 1,044.3 15,995.0 31.2% Peak
GMRES 388.1 209.7 115.1 14.7 26.4 x 14.3 x 7.8 x

Total 4,715.4 2,415.6 1,375.8 107.2 44.0 x 22.5 x 12.8 x
% Comm 0.8 1.4 1.2 3.5

8 CPU Block 1,994.0 786.0 503.2 38.2 52.2 x 20.6 x 13.2 x
Block MF 609.7 1,546.9 2,416.1 31,830.3 31.1% Peak

GMRES 198.3 126.9 61.6 8.1 24.5 x 15.7 x 7.6 x
Total 2,361.5 981.1 614.4 57.0 41.4 x 17.2 x 10.8 x

% Comm 0.9 1.9 2.1 6.8
12 CPU Block 1,335.9 441.4 374.7 25.1 53.2 x 17.6 x 14.9 x

Block MF 910.1 2,754.4 3,244.5 48,411.6 31.5% Peak
GMRES 132.3 66.9 50.4 5.6 23.6 x 11.9 x 9.0 x

Total 1,589.9 550.5 466.8 39.0 40.8 x 14.1 x 12.0 x
% Comm 1.1 2.5 3.0 9.5

T3E-1200 Production X1 Large Data Set

(4.3M Elements) Seconds Seconds Faster
4 CPU Block 4,327.3 82.5 52.5 x

Block MF 304.9 15,991.6 31.2% Peak
GMRES 438.3 17.4 25.2 x

Total 5,120.0 117.2 43.7 x
% Comm 0.7 2.8

8 CPU Block 2,175.5 41.5 52.4 x
Block MF 606.5 31,791.8 31.0% Peak

GMRES 232.9 9.6 24.3 x
Total 2,587.7 61.1 42.4 x

% Comm 0.8 4.2
12 CPU Block 1,466.4 27.5 53.3 x

Block MF 899.8 47,923.6 31.2% Peak
GMRES 151.9 7.0 21.7 x

Total 1,741.8 42.2 41.3 x
% Comm 0.9 5.8

The numbers in the “Block MF” rows are listing a Mega-Flop rate, all other numbers refer to seconds.

