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ABSTRACT 
 
We present our experiences and performance 
results of our in-house computational fluid 
dynamics (CFD) codes on the new Cray X1 
parallel/vector/multi-streaming architecture.  
These codes which solve the time-accurate 
incompressible Navier-Stokes equations are fully 
implicit (i.e. a coupled equation system is solved), 
finite element based, and are built for fully 
unstructured meshes.  The codes are fully parallel 
based on MPI, incorporating mesh partitioning 
strategies, and include a GMRES-based iterative 
equation solver for both matrix-free and sparse-
matrix operational modes.  Throughout the 
development of these CFD codes at the Army 
HPC Research Center, vectorization has never 
been applied, so new vectorization strategies and 
additional algorithms that were required to 
achieve optimal vector and multi-streaming 
performance on the Cray X1 will be discussed. 
 
We also present a detailed analysis of the 
performance of this CFD code on the Cray X1 
including comparisons with other parallel 
architectures such as the Cray T3E-1200, as well 
as raw Giga-Flop rates of various parts of the 
code.  Various factors that may effect the 
performance of the code on the X1 will be 
identified.  Parallel scalability of the code, as well 
as inter-processor communication performance, 
will also be presented. 
 
INTRODUCTION 
 
The Army High Performance Computing (HPC) 
Research Center (AHPCRC) is the first non-
classified site to take shipment of a Cray X1 
system.  The Cray X1 is a new computing 
architecture built to deliver high sustained 

computational performance for a variety of 
important numerical simulation and computational 
modeling applications.  The AHPCRC’s 
infrastructure support and system integration 
contractor NetworkCS, Inc. took shipment of two 
early-production (EP) air-cooled (AC) systems in 
September, 2002.  Each of these systems contains 
16 multi-streaming processors (MSP).  A 
production liquid-cooled (LC) system was 
installed in February, 2003 (see Figure 1). 
 

 
Figure 1.  Cray technicians installing a portion of 
the AHPCRC's liquid-cooled X1 system at 
NetworkCS, Inc. (Minneapolis, MN) on February 
20, 2003. 

This initial system contains a half populated LC 
cabinet containing a total of 32 processors.  This 
existing cabinet will be fully populated (i.e. 
expanded to 64 processors), as well as the 
addition of another fully-populated LC cabinet, in 
stages throughout the first half of 2003 to 
ultimately create an X1 system with a total of 128 
processors.  The systems are owned by the U.S. 
Army, but acquired, maintained and operated by 
NetworkCS, Inc. for use by AHPCRC and DOD 
researchers (see Figure 2).  Both the two AC EP 
systems, as well as this initial LC system, have 
passed acceptance tests. 
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Figure 2.  The AHPCRC’s liquid-cooled Cray X1 
after instillation at NetworkCS, Inc. 

This new Cray X1 system is the AHPCRC’s third 
large-scale HPC architecture.  The center’s first 
HPC system was an 896 processor Thinking 
Machines CM-5 (Serial Number 1) that was 
delivered in 1991 and was retired in 1998.  The 
center’s second large HPC system is an 1,088 
processor Cray T3E-1200 which is still in 
operation and heavily used by AHPCRC and 
DOD researchers.  This system was installed in 
1998.  It is expected that the new Cray X1 
systems will also be heavily used and augment the 
numerical simulation and computational modeling 
capabilities of AHPCRC, Army, and DOD 
researchers. 
 
The AHPCRC and U.S. Army are targeting 
research on critical defense applications for the 
center’s Cray X1 such as computational weather 
modeling and forecasting using applications such 
as MM5 (see [1]), computational fluid dynamics 
(CFD) research to be used, in part, to study 
contaminant dispersion within urban 
environments [2] as shown in Figure 3, 
computational solid mechanics simulations such 
as the prediction of projectile/armor interactions 
[3,4], as well as computational chemistry and 
some other areas such as electromagnetics.  Good 
performance for these targeted applications on the 
Cray X1 will allow AHPCRC and Army 
researchers to perform larger, more detailed, and 

more accurate numerical simulations in shorter 
periods of time that what is currently possible on 
existing systems.  Work is already underway on 
the AHPCRC’s X1 in most of these areas, and the 
specific topic of computational fluid dynamics 
performance on the X1 is the focus of this paper. 
 

 
Figure 3.  Numerical simulation of contaminant 
dispersion in Atlanta, GA.  Shown is a volume 
rendering of contaminant concentration.  
Simulation performed by S. Aliabadi (AHPCRC-
Clark Atlanta University), and visualized by A. 
Johnson (AHPCRC-NetworkCS, Inc.). 

The porting and performance enhancement work 
on the CFD codes discussed here will directly 
apply to similar CFD codes used by our 
AHPCRC-Clark Atlanta University partners, the 
US Army Research Laboratory (ARL), the US 
Army Engineering-Research and Development 
Center (ERDC), and the US Army Natick 
Research and Development Engineering Center 
(Natick RDEC).  These CFD codes are also 
available to researchers at the US Army Military 
Academy at West Point. 
 
In the next section, details about the exact CFD 
code being ported-to and tested-on the Cray X1 
will be given, followed by an overview of the X1 
architecture with a description of porting 
experience and required code modifications to 
achieve full vectorization / multi-streaming.  
Following this are benchmark results including 
both raw scalar (processor) performance, and 
multi-processor scalability.  We conclude with 
some final observations about our early Cray X1 
experiences. 
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UNSTRUCTURED CFD CODE OVERVIEW 
 
Several in-house computational fluid dynamics 
codes have been developed at the AHPCRC 
throughout its 13 year history.  They all share 
commonality in the fact that they are finite 
element based, built for unstructured meshes, fully 
stabilized using SUPG and PSPG methods [5,6], 
time accurate, solve the resulting coupled 
equation system with a GMRES-based iterative 
solver [7], and are fully parallel based on MPI by 
incorporating mesh partitioning techniques [8,9].  
Some of these details will be explained further in 
the following paragraphs.  Initially, these CFD 
codes have been developed within the data-
parallel programming model on the Thinking 
Machines CM-5 [10], but have been subsequently 
ported to the message-passing model based on 
MPI which is portable to almost all HPC 
architectures such as the Cray T3E and X1.  It is 
important that these codes run as fast and 
efficiently as possible because CFD applications 
such as these take up a significant percentage of 
time on the AHPCRC’s current HPC systems. 
 
The particular CFD code being tested here and 
discussed throughout this paper is called 
‘BenchC’ which is a trimmed-down version of a 
more comprehensive CFD code which was used, 
in part, to perform detailed numerical simulations 
of fluid-particle applications [8,11].  This code 
has been in use recently at the AHPCRC for 
various benchmarking and testing purposes, is 
written entirely in C, and has no external library 
dependencies other than MPI.  It is fairly 
representative of most, if not all, finite-element 
CFD codes in use at the AHPCRC.  BenchC has 
various built-in performance measurements such 
as Mega-Flop rates, detailed timings of various 
parts of the code including inter-processor 
communication times, as well as memory usage 
statistics.  It is a fairly small code with a total of 
6,700 lines. 
 
BenchC solves the incompressible Navier-Stokes 
equations that govern fluid motion for a variety of 
systems such as aircraft aerodynamics (see Figure 
9).  The underlying numerical method is the finite 
element method which can handle unstructured 
meshes of any element type or even mixed 
element type meshes, but in general, we 

commonly use tetrahedral (4-nodded) element 
meshes generated by our in-house automatic mesh 
generator DMG [8,12].  Applications using 
meshes containing anywhere between 1 million 
and 5 million elements are common, although 
some of our AHPCRC researchers are starting to 
use meshes containing up to 40 million elements.  
In an extreme benchmarking case, we have solved 
an application on the Cray T3E-1200 with 1 
billion tetrahedral elements (850 total equations) 
using all 1056 processors [13]. 
 
BenchC is a time-accurate implicit flow solver, so 
for each non-linear iteration of each time step, a 
fully coupled equation system is solved.  This 
equation system solves for the velocity and 
pressure variables at each nodal point of the mesh.  
Traditionally, the left-hand-side sparse matrix and 
the right-hand-side vector are formed based on 
traditional finite-element numerical integration of 
linear basis functions, and then the matrix is 
inverted and multiplied with the right-hand-side 
vector to generate the solution update.  Because 
the number of equations being solved are typically 
in the 100s of thousands or millions, a direct 
solver is far too computationally expensive, so 
generally, iterative solvers are used.  BenchC uses 
a GMRES-based iterative solver with a diagonal 
pre-conditioner.  For a point of reference, in a 
typical CFD application that we would perform, 
anywhere between 100 to 2000 time steps are 
computed, 4 non-linear iterations are typically 
used for each time step, and roughly 20 GMRES 
solver iterations are used to (approximately) solve 
the equation system at each non-linear iteration. 
 
With iterative solvers, the left-hand-side matrix 
does not need to be inverted, but its influence is 
required in the form of matrix-vector 
multiplications.  The GMRES iterative solver will 
provide various vectors that are normally 
multiplied with the “user provided” left-hand-side 
matrix to form a resultant vector, which is then 
used in the GMRES algorithm for its next 
iteration.  Most of our AHPCRC CFD codes, 
including BenchC, use a different scheme called 
matrix-free methods.  Instead of forming and 
storing the left-hand-side sparse matrix to be used 
for matrix-vector multiplication, we form the 
matrix-vector resultant vector directly whenever 
required within the GMRES algorithm.  We can 



 4

do this since we know the exact formulation that 
would have been used to create the left-hand-side 
sparse matrix.  While adding somewhat overall to 
the number of calculations being performed, these 
matrix-free codes use significantly less memory 
since the left-hand-side matrix does not need to be 
stored.  The numerical results are exactly the same 
with matrix-free methods as if we actually went 
through a matrix-vector multiply procedure using 
a left-hand-side sparse matrix. 
 
These matrix-free methods were developed in the 
early 90’s on the CM-5 [14], which as with most 
systems in those days, had very low memory per 
processor.  The AHPCRC’s CM-5 had 32 Mega-
Bytes of memory per processor. 
 
Because of BenchC’s usage of matrix-free 
methods, roughly 70 percent of its time is spent 
directly forming these matrix-vector resultant 
vectors using traditional finite element formation 
methods (i.e. numerical integrations of linear basis 
functions).  This part of the code is called the 
‘Block’, and it is important that this routine runs 
at optimal speeds.  Another roughly 15 percent of 
the time is spent in other GMRES routines that 
typically includes vector dot-products, reductions, 
scalar-vector multiplies, and other vector-based 
linear algebra routines.  Another 5 percent or so is 
spent in another routine similar to Block, but is 
used to form the initial diagonal pre-conditioner 
and right-hand-side vector.  The rest of the code’s 
time is spent in general overhead, vector updates, 
a few reductions, some I/O, and inter-processor 
communication.  For benchmarking, most I/O is 
turned off.  All floating point calculations in 
BenchC are double-precision. 
 
BenchC also has a sparse-matrix mode of 
operation (as opposed to the matrix-free mode) 
where the left-hand-side is formed and stored in a 
sparse form, and a normal matrix-vector multiply 
takes place within the GMRES iterative solver.  
These other routines were also fully vectorized 
and multi-streamed, but are not the focus of this 
paper.  Matrix-free operations are much more 
common for the CFD codes at the AHPCRC, so 
we chose to initially concentrate on those routines 
for performance on the Cray X1. 
 

The parallelism of BenchC (and all other 
AHPCRC finite-element CFD codes) is based on 
mesh partitioning and fast inter-processor 
communication “gather and scatter” routines.  
Basically, the given unstructured mesh is 
partitioned into contiguous pieces using a mesh 
partitioner, and a “mesh partition” is assigned to 
each processor.  Typically, each processor will be 
assigned anywhere between 100 thousand to 1 
million mesh elements.  We generally use the 
routines provided by ParMETIS [15,16] to 
perform the mesh partitioning, but BenchC 
actually uses its own built-in parallel Recursive 
Center Bisection (RCB) algorithm to perform this 
task.  An example mesh partitioning provided by 
ParMETIS (as seen on the surface of the mesh) is 
shown in Figure 4. 
 

 
Figure 4.  The surface of an unstructured 
tetrahedral element mesh of a tactical unmanned 
aerial vehicle showing the processor assignments of 
each mesh partition. 

Once the mesh is distributed amongst the 
processors in an optimal arrangement, inter 
processor communication paths are built so that 
mesh nodes, and on-processor node copies, can be 
kept in sync by using the inter-processor 
communication procedures.  Inter-processor 
communication is required at each GMRES 
iteration in order to keep these mesh node 
variables consistent.  Due to the mesh partitioning 
and efficient distribution, only variables at mesh 
nodes that lie on partition boundaries need to be 
transferred to the neighboring processors.  Most 
nodes (in many cases, 90 – 95 percent) lie in the 
center of mesh partitions and therefore do not 
need to be communicated amongst any other 
processors.  Also, due to the mesh partitioning, 
the number of processor neighbors that each 
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processor may need to communicate with maxes 
out at around 15 – 20 other processors. 
 
Very efficient non-blocking MPI communication 
routines are used for the actual data transfers, and 
these data transfer lists such as which processors 
need to be communicated with, and how much 
data is being sent to each processor, as well as the 
allocation of internal data buffers used for 
facilitating data transfers, are all set-up during the 
pre-processing stages and do not need to be re-
computed during the actual numerical simulation 
parts of the code.  Typically, only a few 
percentage of total execution time is spent 
performing inter-processor communication, and 
BenchC has built-in procedures to report these 
timings.  Pre-processing time is always excluded 
from any performance timings. 
 
It is expected that our parallel implementation and 
communication routines are as efficient as 
possible using MPI.  Possibly using routines 
provided by Unified Parallel C (UPC) or Co-
Array Fortran (CAF) could be even more efficient 
on architectures that support distributed shared-
memory (i.e. globally addressable memory) such 
as the Cray X1. 
 
X1 ARCHITECTURE DESIGN FEATURES 
 
The Cray X1 is an entirely new computer 
architecture that combines both the scalability of a 
distributed memory, multi-processor system with 
the computational performance of a specially 
designed processor (CPU) that incorporates both 
multi-streaming and vector computing 
capabilities.  Some other features included a fast 
inter-processor communication network, large 
memory capacity, high memory-to-processor 
bandwidth, and a global memory address space 
(i.e. fully addressable by any processor).  All 
these features are combined in an integrated 
system to provide a high level of computational 
performance including a high overall peak 
performance rate (12.8 Giga-Flops per processor, 
double-precision) with a high sustained 
computational capability (10% - 30% observed 
sustained rates).  This level of performance is 
achieved if all (most) computations are fully 
vectorized and multi-streamed.  Scalar operations 
on the Cray X1 processor do not perform at nearly 

the same rates as the vector computing elements, 
so any significant scalar computations will 
degrade the overall performance on the Cray X1. 
 
Some of the key Cray X1 hardware features that 
are important to a user (see Appendix A) are the 
actual Cray X1 cabinet, and there are two types.  
The AC cabinet can hold up to 4 node boards, 
while the LC cabinet can hold up to 16, 8 on each 
side.  Multiple cabinets can be combined together 
to form larger systems.  Each node board within a 
cabinet holds 4 multi-streaming processors (MSP) 
and memory.  The AHPCRC’s X1 systems have 
16 Gigia-Bytes of memory on each node board, 
and that memory is shared by each MSP on the 
board.  Along with the MSPs and memory on each 
node board, are I/O channels and controllers, as 
well as the inter-processor network components 
and controllers.  The LC cabinet also includes 4 
router boards to help facilitate the inter-processor 
(inter-node) communications. 
 
A MSP is the user-addressable computational unit 
(i.e. processor) and has a peak floating point rate 
of 12.8 Giga-Flops.  For example, if a user 
requests 4 processors with MPI (i.e. ‘mpirun –np 
4 MY_Application’), they would get 4 MSPs, 
probably on the same node board.  The user is, in 
general, responsible for breaking up their 
application amongst MSPs, but in future 
programming environment releases, OpenMP will 
be available for single node board applications. 
 
Each MSP contains 4 single-streaming processors 
(SSP), and the compiler is (in general) responsible 
for breaking up the work that gets assigned to the 
MSP amongst its 4 SSPs.  Also located on each 
MSP are 4 cache memory chips.  Each SSP has 2 
vector registers (vector computing elements) and a 
scalar computing element.  The compiler is, again, 
responsible for vectorizing the code that gets 
assigned to each SSP. 
 
To achieve efficiency on the Cray X1, the original 
problem must be broken up into smaller and 
smaller pieces of work, and then these smaller 
pieces of work are performed in parallel.  A 
detailed schematic of this is shown in Appendix 
A.  A typical CFD problem is first broken up into 
pieces using the mesh partitioning techniques 
described in the previous section, and each mesh 
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partition is assigned to a single MSP.  The 
communication routines within BenchC are 
responsible for communication and coordination 
amongst the MSPs through the X1’s interconnect 
network.  From this point on (i.e. computational 
work is assigned to an MSP), the compiler takes 
over and will try to multi-stream and vectorize all 
loops.  For optimal performance, most if not all 
loops must multi-stream and vectorize.  In 
general, a long loop is both multi-streamed and 
vectorized at the same time, but for shorter loops, 
or loops embedded within other loops, the 
compiler may try to multi-stream one loop (for 
example, an outer loop) and vectorize another 
loop (for example, an inner loop).  The user can 
have some control over this process by applying 
compiler directives strategically. 
 
PORTING AND CODE MODIFICATIONS 
 
The porting of BenchC to the Cray X1 was a very 
straightforward process.  The initial port took less 
than 1 hour and the code was running and 
providing correct results within that time.  
However, the code wasn’t fully vectorized and 
multi-streamed initially so performance was 
initially limited. 
 
The compiler was able to fully vectorize and 
multi-stream the routines within the GMRES part 
of the code without any complications since, as 
stated earlier, that part of the code contains simple 
vector-based linear algebra routines, and no vector 
dependencies exist within the loops.  The Cray X1 
compiler provides many useful loop markings and 
reporting functions to specify which loops are 
being vectorized and multi-streamed. 
 
The main part of BenchC, as stated previously, is 
the ‘Block’ routine where the code spends roughly 
70% of its time.  Block contains one single loop 
with roughly 1000 double-precision floating point 
operations per iteration, and the compiler couldn’t 
initially vectorize or multi-stream this loop.  A 
pseudo-Fortran outline of Block is shown in 
Appendix B, which is a very typical finite element 
method loop.  As can be seen, there is one main 
loop where each iteration corresponds to a single 
mesh element.  Each tetrahedral element consists 
of 4 mesh nodes, so initially, data associated with 
these nodes (N1,N2,N3,N4) are “gathered” from 

global node arrays.  Examples of those lines of 
code are highlighted in blue in Appendix B.  After 
all of the data for this particular element is 
gathered, all of the calculations are performed 
using these localized variables (highlighted in 
green).  Once the results are computed, the results 
are “scattered” back into main memory for each of 
the 4 mesh nodes of this particular element.  
Examples of those lines are highlighted in red.  
This main loop could not be vectorized or multi-
streamed because of this memory scattering 
procedure at the end of the loop.  The compiler 
doesn’t have any information about what the 4 
indexes N1,N2,N3,N4 could be, and it is possible 
to generate errors in the results if any of these 
indices are repeated during a vectorized or multi-
streamed loop.  We do observe these errors in the 
results if this looped is forced to be vectorized and 
multi-streamed without any special modifications. 
 
Our solution to this problem is to re-organize and 
arrange the elements of the mesh (the ones 
currently assigned to a particular MSP) into 
groups.  The only restriction we have on a group 
of elements is that no two elements in a group can 
be addressing the same node index (i.e. no 
N1,N2,N3,N4 indices will repeat for a particular 
element group).  With help from David Whitaker 
from Cray’s applications department, we built an 
element grouping (sometimes called coloring) 
routine to build these element groups during the 
code’s pre-processing stage.  The algorithm is 
actually quite simple and does not take up much 
extra time.  Element groups are created to contain 
as many mesh elements as possible, and large 
element groups can be created.  A few of the 
groups pick-up remainder elements, and may have 
only a few members. 
 
For a typical problem on the X1 using 
unstructured tetrahedral element meshes, 
anywhere between 44 and 47 groups are formed.  
This number of groups is determined internally by 
the coloring algorithm, but is roughly proportional 
to the number of mesh elements attached to each 
mesh node.  A typical distribution of the number 
of elements in each group is shown in Figure 5.  
Typically, anywhere between a few thousand to 
tens of thousands of elements per group can be 
created for most applications, and that directly 
corresponds to the length of the vectorizable (and 
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multi-streamable) loops.  The “optimal” vector 
size on the X1 is 64, add to that the 4 SSPs, to get 
a size of 256.  We have observed that larger 
vector lengths perform better, so it is 
recommended that the user try to build as long 
vector lengths as possible. 
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Figure 5.  Number of mesh elements in each 
vectorized/multi-streamed group for a typical CFD 
problem. 

Once the element groups are formed in the pre-
processing stage, the Block loop shown in 
Appendix B can be slightly modified by the 
addition of an outer group loop, with the inner 
element loop remaining fairly unchanged.  Since 
we now know that each element in a group 
doesn’t have repeated node indices, we can force 
full vectorization and multi-streaming of the inner 
element loop by using a “CONCURRENT” 
compiler directive.  This compiler directive 
replaces the more traditional “IVDEP” directive 
seen in past Cray systems.  A high level of 
performance of the Block routine is now achieved 
without introducing any errors due to the memory 
scatter operations at the end.  The loop performs 
very well on the X1, also due in part to the fact 
that each iteration contains roughly 1000 floating 
point operations. 
 
Within this main element loop, there are also a 
few “IF” statements and square-roots, but the 
Cray X1 vector processor has been designed to 
support these features, so they had no effect on 
vectorization or performance. 
 
Of course, each processor (MSP) has been 
assigned its own piece of the unstructured mesh, 
so each processor performs is own element 

grouping procedure independently.  Even though 
each processor gets assigned roughly the same 
number of elements, each processor may have a 
slightly different number of groups with slightly 
different overall performance based on slight 
differences in vector sizes.  We have observed up 
to 9% differences in overall run-time for the 
Block routine on different MSPs.  We believe that 
some of these slight performance differences on 
each MSP may be contributing somewhat to the 
overall communication overhead (as described in 
the following sections) since all processors must 
by synchronized before a communication 
procedure can take place. 
 
The inclusion of this element grouping/coloring 
scheme, as well as the slight modifications to the 
Block routine as shown in Appendix B, was all 
that was required to achieve full vectorization and 
multi-streaming of the BenchC CFD code.  The 
MPI parallel set-up and communication parts of 
BenchC required no changes. 
 
PROCESSOR SPEED PERFORMANCE 
ANALYSIS 
 
For testing of BenchC on the Cray X1, we initially 
selected 3 test cases.  The “Small” data set 
contains a mesh with 440 thousand tetrahedral 
elements.  The “Medium” data set mesh contains 
roughly 2 million tetrahedral elements.  The 
“Large” data set mesh contains 4.3 million 
tetrahedral elements.  Our basis of comparison 
was the performance of BenchC on the Cray T3E-
1200 which we have been using as our main HPC 
system for the past 5 years.  In the past, we have 
performed many simulations, testing, analysis, 
and optimization of these CFD codes on the T3E.  
We also compared the performance to some other 
popular HPC architectures.  We initially chose to 
test the code using 4, 8, and 12 processors 
(MSPs), but have also performed X1 scalability 
tests using up to 28 processors, as well as a 60 
MSP test performed by Cray themselves on one of 
their systems. 
 
We measure run times for various parts of 
BenchC including “Total” time, time spent in the 
“Block” routine (see Appendix B), time spent in 
the “GMRES” routine, and time spent performing 
the inter-processor communication.  Set-up time is 
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not included in any of these measurements and is 
a relatively small time compared to overall run 
time. 
 
We have calculated the exact number of floating 
point operations in the Block routine, and from 
that, we can derive a Mega-Flop rate for the Block 
routine.  These numbers are based on our own 
counting, but the Block routine has been made 
more and more efficient over the years so it would 
be surprising if the compiler can find any 
significant floating point operation improvements 
on its own.  Also, through comparisons of 
performance of Block running on the X1 with 
Block on the T3E, we get a Mega-Flop rate of 
around 80 on a T3E processor which we know to 
be fairly a accurate number, and through 
extrapolation, we are confident about the Mega-
Flop rates we are counting on the X1.  We hope to 
confirm these rates by using Cray Performance 
Analysis Tools (CrayPAT) in the near future. 
 
The raw benchmark numbers of our 3 data sets on 
4, 8, and 12 processors are given in Appendix C.  
Overall, the performance on the X1 is roughly 42 
times faster than the T3E, and the Block routine 
itself is roughly 53 times faster, on a per-
processor basis.  The “Block MF” row lists the 
Mega-Flop rate, so for the Block routine, we 
consistently are measuring roughly 4 Giga-Flops 
per MSP, which is almost a third of peak 
performance, and this number holds all the way 
up to our largest test case which was run on 60 
MSPs.  On that many processors, Block was 
running at a sustained rate of approximately 237 
Giga-Flops.  Overall (i.e. all of the counted 
floating point operations divided by the total time) 
is roughly 3 Giga-Flops per MSP. 
 
The “GMRES” performance increases are not as 
high as those in Block.  The GMRES 
vectorized/multi-streamed loops are very long, but 
each iteration contains only one or two floating 
point operations.  We believe that the many 
operations in each loop iteration of Block 
contribute to its significant performance. 
 
The percent of time spent performing 
communication on the X1 is larger than on the 
T3E.  Even though we observe the inter-processor 
communication on the X1 to be significantly 

faster than on the T3E, for BenchC, it is not 42 
times faster than on the T3E.  Therefore, 
communication is taking up a larger percentage of 
total time. 
 
Performance comparisons of BenchC to a SGI 
Origin 3000 (MIPS 14000 at 500 MHz) and an 
IBM sp690 SP (Power4 at 1.3 GHz) are also 
provided in Appendix B for the Medium data set.  
The Cray X1 shows significant better performance 
than those two systems, on a per-processor basis.  
The port to these other two systems was a fairly 
straight port.  Some time was spent trying to 
optimize the Block routine on the IBM, but 
performance of Block seemed to be fairly 
insensitive to any code changes or re-structuring. 
 
PARALLEL SCALABILITY AND 
COMMUNICATION PERFORMANCE 
ANALYSIS 
 
Good scalability of BenchC on the X1 can be seen 
in the tables of Appendix C, and we further tested 
the scalability of the code all the way to our 
system’s 28 processors (our half populated LC 
cabinet contains 32 MSPs total, but 4 of them are 
reserved for the command-node of the system).  
Those results are shown in Figure 6.  In this 
figure, speed-up is measured based on the 
performance of BenchC on 4 processors. 
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Figure 6.  Overall speed-up of the BenchC code for 
runs using up to 28 processors (MSPs).  Speed-ups 
of various parts of BenchC are also shown.  Speed-
ups are based on the performance on 4 processors. 
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As can be seen in Figure 6, linear scalability is 
observed for the Block routine, while overall 
scalability is still quite good.  The scalability of 
the communication time, however, is flat since we 
measured consistent communication time (actual 
seconds) for all processor counts.  A graph 
showing the percentage of total run time spent in 
the Block routine, the GMRES routine, and in 
communication is provided in Figure 7. 
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Figure 7.  Percentages of time spent in various parts 
of the BenchC code, for various runs using up to 28 
processors (MSPs). 

Again, since communication time is rather flat, for 
larger processor jobs, the percentage of total time 
spent in the Block routine comes down and 
degrades our scalability somewhat. 
 
Measuring communication time in BenchC is 
somewhat difficult since a communication 
procedure can not take place until all processors 
are synchronized right after the Block routine is 
called.  As explained earlier, we believe that due 
to the element blocking strategy, each processor 
achieves slightly different performance through 
the Block routine, and all processors must wait for 
the slowest one before communication takes 
place.  This slight out-of-sync time we believe is 
showing up in our communication measurements.  
Some of our more detailed measurements of 
communication time are showing this, since in 
some measurements, less than one third of the 
measured communication time is actually spent 
performing communication.  All other time is 
spent (we believe) in processor synchronization. 
 

In one of our Fortran CFD codes very similar to 
BenchC, we have replaced the MPI-based 
communication procedures with new routines 
based on Co-Array Fortran (CAF).  More detailed 
timings of those routines show an almost 
insignificant time spent performing actual 
communication (i.e. for CAF, communication is 
accomplished by references to global shared 
arrays), but still, a larger actual time is measured 
for communication which is due to the processor 
synchronization time (roughly 3 to 5 percent of 
our communication measurement is actually spent 
transferring data within this specific CAF code).  
With this more precise measurement of inter-
processor communication using the CAF code, we 
see data transfer rates of around 2 to 3 Giga-Bytes 
per second. 
 
We plan to evaluate these communication 
procedures, and processor synchronization times, 
in more detail in the near further.  We also plan to 
add Unified Parallel C (UPC) constructs to the 
BenchC code to measure its behavior for inter-
processor communication. 
 
A test of BenchC on a Cray X1 system with 60 
MSPs is shown in Figure 8.  For that test, we saw 
consistently 4 Giga-Flops per processor for the 
Block routine, and the overall (Total) performance 
is shown in Figure 8.  Again, communication 
times were rather flat and that limited overall 
scalability for the higher processor counts.  Due to 
the overall speed of the X1, especially when using 
up to 60 processors, we believe the problem size 
(the Large data set test case) was too small and the 
communication times began to dominate 
performance. 
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Figure 8.  Overall run times, and time spent 
performing inter-processor communication, for the 
BenchC code using up to 60 processors (MSPs). 

 
Finally, to test the largest application that we 
could perform on our current 28-processor X1 
system, we performed a CFD simulation using 
BenchC for a test case containing 243 million 
tetrahedral elements (see Figure 9).  This mesh 
contained roughly 41 million mesh nodes, with an 
equation system of 160 million unknowns.  This 
example is of airflow past a cargo aircraft in a 
take-off configuration, and was set-up based on a 
model and mesh we used several years ago when 
performing paratrooper/cargo aircraft interaction 
studies [9].  The aircraft is at roughly 10 degrees 
angle-of-attack, so large separation regions are 
observed over the top of the wing.  The image was 
rendered on the AHPCRC’s Cray T3E-1200 using 
350 processors with our Presto Visualizer’s 
volume rendering capabilities [17,18].  A volume 
rendering of velocity magnitude (blues are low 
velocity, reds are high velocity) is shown in 
Figure 9. 
 
A mesh with 243 million elements was chosen 
since this was, generally, the larges we could fit 
into the memory of 28 MSPs.  BenchC used 
roughly 76.8 Giga-Bytes of memory for this 
application.  A total of 2,000 total time steps were 
computed, with 4 non-linear iterations each time 
step, and 15 GMRES iterations for each non-
linear iteration.  Each data file written to disk (we 
wrote a data file every other time step) is about 
1.3 Giga-Bytes in size, and it takes roughly 10 
Giga-Bytes to store the tetrahedral element mesh 
itself. 

 
We could compute a time step in approximately 
every 3 minutes, and the Block routine ran at a 
rate of 113.8 Giga-Flops (roughly 91.5 Giga-Flops 
overall).  We believe applications at this scale are 
now becoming practical on systems such as the 
Cray X1, since results can be obtained in only a 
few days. 
 
CONCLUSIONS 
 
Over the last 6 months, we have been testing the 
AHPCRC’s new Cray X1 for various numerical 
simulation applications such as the unstructured 
mesh CFD applications discussed in this paper.  
Overall, the experience has been positive and the 
X1 has performed very well for our unstructured 
mesh CFD codes, achieving overall 43 time faster 
performance compared to a Cray T3E on a per-
processor basis, with the main CFD kernel (i.e. 
the Block routine) running at almost a third of 
peak performance.  Scalability on the X1 system 
has also been very good. 
 
We are the first non-classified site to receive this 
new architecture, both new hardware and new 
software, and while there were a few software and 
OS problems that needed to be worked out, they 
have been fixed fairly quickly and the X1 has 
proven to be a very stable and productive 
machine.  We are ready to go forward with the 
upgrades we will be receiving to the system (i.e. 
the addition of more processors to form a system 
with 128 MSPs) and begin to use the Cray X1 as 
our main high-performance, high-capability 
computing engine.  The X1’s performance for 
these CFD codes will be allowing AHPCRC and 
Army researchers to perform larger, more 
detailed, and ultimately, more accurate 
simulations in shorter periods of time. 
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Figure 9.  Large scale simulation of airflow past a cargo aircraft in a take-off configuration. Shown is a 
volume-rendered image of velocity magnitude.  Computed on the Cray X1 using 28 processors.  The mesh 
contains 243 million tetrahedral elements. 
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APPENDIX A 
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Schematic of the major Cray X1 hardware components (left) along with a schematic on how a CFD 
application will be mapped on to the associated X1 hardware.  The CFD application is broken up into 
smaller and smaller pieces until the actual vector computing elements can be engaged by a small sub-set 
of the original application.  Along with the vector computing elements (shown in yellow), other X1 
components include the single-streaming processor (SSP) shown in green, the multi-streaming processor 
(MSP) shown in red, the actual X1 node boards shown in light blue, and an actual X1 AC cabinet.  
Memory chips (either main memory on the X1 node board, or cache memory on the MSP) are shown in 
blue.  The user’s application is responsible for splitting up the application amongst the MSPs, but the 
compiler (in general) breaks up the problem amongst the SSPs and vector computing elements. 
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APPENDIX B 
 
 DO IG = 1, NUMBER_OF_GROUPS 
    IG_BEG = GROUPS(IG) 
    IG_END = GROUPS(IG+1) 
 
    !DIR$ CONCURRENT 
DO I = 1, NUMBER_OF_MESH_ELEMENTS    DO I = IG_BEG, IG_END 
   N1 = IEN(1, I)       N1 = IEN(1, I) 
   N2 = IEN(2, I)       N2 = IEN(2, I) 
   N3 = IEN(3, I)       N3 = IEN(3, I) 
   N4 = IEN(4, I)       N4 = IEN(4, I) 
 
   X1 = X(1, N1)       X1 = X(1, N1) 
   Y1 = X(2, N1)       Y1 = X(2, N1) 
   Z1 = X(3, N1)       Z1 = X(3, N1) 
   X2 = X(1, N2)       X2 = X(1, N2) 
   Y2 = X(2, N2)       Y2 = X(2, N2) 
   Z2 = X(3, N2)       Z2 = X(3, N2) 
   X3 = X(1, N3)       X3 = X(1, N3) 
 
   …SEVERAL MORE MEMORY “GATHER”…       …SEVERAL MORE MEMORY “GATHER”… 
   …STATEMENTS LIKE THESE…       …STATEMENTS LIKE THESE… 
 
 
   UI = SH01*U1 + SH02*U2       UI = SH01*U1 + SH02*U2 
      + SH03*U3 + SH04*U4          + SH03*U3 + SH04*U4 
   VI = SH01*V1 + SH02*V2       VI = SH01*V1 + SH02*V2 
      + SH03*V3 + SH04*V4          + SH03*V3 + SH04*V4 
   WI = SH01*W1 + SH02*W2       WI = SH01*W1 + SH02*W2 
      + SH03*W3 + SH04*W4          + SH03*W3 + SH04*W4 
   PI = SH01*P1 + SH02*P2       PI = SH01*P1 + SH02*P2 
      + SH03*P3 + SH04*P4          + SH03*P3 + SH04*P4 
   UXI = SHX1*U1 + SHX2*U2       UXI = SHX1*U1 + SHX2*U2 
       + SHX3*U3 + SHX4*U4           + SHX3*U3 + SHX4*U4 
   UYI = SHY1*U1 + SHY2*U2       UYI = SHY1*U1 + SHY2*U2 
       + SHY3*U3 + SHY4*U4           + SHY3*U3 + SHY4*U4 
   UZI = SHZ1*U1 + SHZ2*U2       UZI = SHZ1*U1 + SHZ2*U2 
       + SHZ3*U3 + SHZ4*U4           + SHZ3*U3 + SHZ4*U4 
   VXI = SHX1*V1 + SHX2*V2       VXI = SHX1*V1 + SHX2*V2 
       + SHX3*V3 + SHX4*V4           + SHX3*V3 + SHX4*V4 
 
   …ROUGHLY 1000 FLOATING POINT OPERAIONS…       …ROUGHLY 1000 FLOATING POINT OPERATIONS… 
   …PER ITERATION.  A FEW IF STATEMENTS AND…       …PER ITERATION.  A FEW IF STATEMENTS AND… 
   …A COUPLE SQURE ROOTS…       …A COUPLE SQUARE ROOTS… 
 
 
   RES(1, N1) = RES(1, N1) + RESULT_U1       RES(1, N1) = RES(1, N1) + RESULT_U1 
   RES(2, N1) = RES(2, N1) + RESULT_V1       RES(2, N1) = RES(2, N1) + RESULT_V1 
   RES(3, N1) = RES(3, N1) + RESULT_W1       RES(3, N1) = RES(3, N1) + RESULT_W1 
   RES(4, N1) = RES(4, N1) + RESULT_P1       RES(4, N1) = RES(4, N1) + RESULT_P1 
   RES(1, N2) = RES(1, N2) + RESULT_U2       RES(1, N2) = RES(1, N2) + RESULT_U2 
   RES(2, N2) = RES(2, N2) + RESULT_V2       RES(2, N2) = RES(2, N2) + RESULT_V2 
   RES(3, N2) = RES(3, N2) + RESULT_W2       RES(3, N2) = RES(3, N2) + RESULT_W2 
 
   …SEVERAL MORE MEMORY “SCATTER”…       …SEVERAL MORE MEMORY “SCATTER”… 
   …STATEMENTS LIKE THESE…       …STATEMENTS LIKE THESE… 
ENDDO   !…END OF ELEMENT LOOP    ENDDO   !…END OF ELEMENT GROUP LOOP 
 
 ENDDO   !…END OF GROUP LOOP 

 
 
Pseudo-Fortran code of the main computational kernel for the CFD finite-element benchmark codes.  The 
original code is shown on the left while the slightly modified code that incorporates an element grouping 
(coloring) strategy is shown on the right.  The original code can not be vectorized or multi-streamed due 
to the memory scatter operations highlighted in red.  The inner element loop in the modified code on the 
right can be fully vectorized and multi-streamed due to the element grouping strategy. 
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APPENDIX C 
 

T3E-1200 Production X1 Small Data Set 
(0.44M Elements) Seconds Seconds Faster 

4 CPU                Block 3,537.0 66.5 53.2 x 
Block MF 304.6 16,195.0 31.6% Peak 

GMRES 360.5 16.4 22.0 x 
Total 4,203.6 103.0 40.8 x 

% Comm 1.0 7.1  
8 CPU                Block 1,749.0 31.3 55.9 x 

Block MF 616.0 34,423.0 33.6% Peak 
GMRES 188.8 9.9 19.1 x 

Total 2,099.4 55.1 38.1 x 
% Comm 1.2 14.0  

12 CPU              Block 1,133.7 22.1 51.3 x 
Block MF 950.0 48,728.4 31.7 % Peak 

GMRES 128.1 9.3 13.8 x 
Total 1,376.6 44.3 31.1 x 

% Comm 1.7 18.9  
 

T3E-1200 SGI Origin IBM p690 SP Production X1 Medium Data Set 
(2.0M Elements) 

Seconds Seconds Seconds Seconds 
Faster 

T3E 
Faster 

SGI 
Faster 

IBM 
4 CPU          Block 3,997.7 2,049.7 1,164.2 76.0 52.6 x 27.0 x 15.3 x 

Block MF 304.1 593.1 1,044.3 15,995.0 31.2% Peak 
GMRES 388.1 209.7 115.1 14.7 26.4 x 14.3 x 7.8 x 

Total 4,715.4 2,415.6 1,375.8 107.2 44.0 x 22.5 x 12.8 x 
% Comm 0.8 1.4 1.2 3.5  

8 CPU          Block 1,994.0 786.0 503.2 38.2 52.2 x 20.6 x 13.2 x 
Block MF 609.7 1,546.9 2,416.1 31,830.3 31.1% Peak 

GMRES 198.3 126.9 61.6 8.1 24.5 x 15.7 x 7.6 x 
Total 2,361.5 981.1 614.4 57.0 41.4 x 17.2 x 10.8 x 

% Comm 0.9 1.9 2.1 6.8  
12 CPU        Block 1,335.9 441.4 374.7 25.1 53.2 x 17.6 x 14.9 x 

Block MF 910.1 2,754.4 3,244.5 48,411.6 31.5% Peak 
GMRES 132.3 66.9 50.4 5.6 23.6 x 11.9 x 9.0 x 

Total 1,589.9 550.5 466.8 39.0 40.8 x 14.1 x 12.0 x 
% Comm 1.1 2.5 3.0 9.5  

 
T3E-1200 Production X1 Large Data Set 

(4.3M Elements) Seconds Seconds Faster 
4 CPU                Block 4,327.3 82.5 52.5 x 

Block MF 304.9 15,991.6 31.2% Peak 
GMRES 438.3 17.4 25.2 x 

Total 5,120.0 117.2 43.7 x 
% Comm 0.7 2.8  

8 CPU                Block 2,175.5 41.5 52.4 x 
Block MF 606.5 31,791.8 31.0% Peak 

GMRES 232.9 9.6 24.3 x 
Total 2,587.7 61.1 42.4 x 

% Comm 0.8 4.2  
12 CPU              Block 1,466.4 27.5 53.3 x 

Block MF 899.8 47,923.6 31.2% Peak 
GMRES 151.9 7.0 21.7 x 

Total 1,741.8 42.2 41.3 x 
% Comm 0.9 5.8  

 
The numbers in the “Block MF” rows are listing a Mega-Flop rate, all other numbers refer to seconds. 


