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ABSTRACT 
 
We present various methods and computational 
techniques for visualizing large scientific data sets 
from remote locations over the Internet.  These 
techniques are based on a client-server concept 
where the server component is fully implemented 
in parallel based on the distributed memory 
programming model using MPI.  The client 
component runs on the user’s desktop system, and 
the two components communicate using standard 
Internet protocols.  These methods and techniques 
have been incorporated into the “Presto” data 
visualization software and are used to visualize 
unstructured mesh data sets such as those found in 
computational fluid dynamics or computational 
structural mechanics simulations.  Advanced 
visualization methods such as parallel volume 
rendering have also been incorporated into the 
Presto visualizer. 
 
INTRODUCTION 
 
Visualizing and interpreting results of large-scale 
numerical simulations has become increasingly 
difficult as the scale of the calculations being 
performed on today’s high performance 
computing (HPC) architectures increases 
dramatically.  In the recent past, numerical 
simulations with one or two million mesh 
elements were considered large.  Today, many 
researchers are routinely performing simulations 
on parallel HPC architectures with meshes 
containing anywhere between 10 and 100 million 
elements or larger.  These simulations produce 
data files on the order of tens to hundreds of Giga-
bytes in size, and these data files must be 
interpreted through scientific visualization.  Also, 
most researchers use HPC architectures which are 
not local to their university or research lab.  Most 

HPC architectures are found at central computing 
facilities that maintain and administer a large 
system which is used by many researchers from 
many locations. 
 
In a “traditional” method to visualize the results of 
a numerical simulation, the researcher would 
download the computed results over the Internet 
on to their local workstation from the remote HPC 
systems that generated the data.  Once the 
simulation files are residing on a local disk, a 
workstation-based visualization program is run 
which loads the data set into system memory and 
processes it for visualization.  The user can then 
show the boundaries of the problem, possibly 
shaded with some simulation variables, or the user 
could create cross-sections, iso-surfaces, 
streamlines, etc. to help visualize and interpret the 
results as they interactively explore the data set.  
All of these calculations to create/extract these 
visualization constructs are performed locally on 
the user’s workstation as well as displaying the 
geometry using OpenGL or some other 3D API.  
This mode of visualization fails for large 
numerical simulations due to several factors: 
1) Transferring large data files over the Internet 

takes a significant amount of time. 
2) Storing the large data files on a local disk can 

take a significant amount of space, especially 
when several separate simulations are being 
stored. 

3) The user’s workstation usually does not have 
enough memory to load the entire data set. 

4) The user’s local workstation may not have 
enough computing power to process the entire 
data set effectively. 

 
To overcome these visualization bottlenecks and 
to develop a toolkit that fits within a remote HPC 
model, we have developed the “Presto” data 
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visualizer [1,2].  This program is able to visualize 
large unstructured mesh data sets residing on 
remote HPC architectures using parallel 
computing methods.  Fully unstructured meshes 
can be processed, and the meshes can contain 
tetrahedral (4-nodded), hexahedral (8-nodded), 
pyramid (5-nodded), wedge (6-nodded), and also 
mixed-element type meshes.  Both scalor and 
vector data can be visualized, as well as time-
dependent and moving mesh data sets in order to 
create animations.  Typically, computational fluid 
dynamics (CFD) data sets are being visualized by 
Presto, but some computational solid mechanics 
(CSM) simulations have also been visualized. 
 
Presto is built within a client-server framework 
which facilitates remote visualization and data 
processing.  The Presto Server component is fully 
written in parallel based on MPI and runs on the 
remote HPC architecture where the simulation 
data was computed.  The Presto Client component 
handles all user interaction and displays all 3D 
geometry sent to it by the server.  The Client is 
designed to be a very “light” application with very 
minimal memory requirements so it can be run on 
most desktop systems.  Both components are built 
to be very portable and run on most if not all HPC 
architectures and desktop workstations. 
 
A client-server based scientific visualizer that runs 
on large HPC systems is essential to our 
AHPCRC and Army Research Laboratory (ARL) 
partner organizations due to the size and scale of 
calculations being performed at those respective 
sites.  Our research partners at AHPCRC-Clark 
Atlanta University have been major users of 
Presto and are visualizing data located on the 
AHPCRC’s T3E in Minneapolis, MN from their 
university site in Atlatna, GA, on a daily basis.  
Our partners at ARL have been using Presto’s 
volume rendering capabilities to create high-
quality animations for display in immersive 
environments.  Both of these tasks, unique to 
Presto, could not be performed with any other 
application.  Presto is currently available to all 
researchers linked to the AHPCRC data center, 
and also installed on several computing systems at 
ARL.  Presto is also used by researchers at the US 
Army Military Academy at West Point. 
 

More details about Presto’s client-server 
framework, the parallel implementation, as well as 
information about Presto’s parallel rendering 
capabilities are discussed in the next sections.  
 
CLIENT-SERVER FRAMEWORK 
 
Large HPC architectures usually have very large 
and fast work disks that are used to store 
simulation results.  The total storage capacity of 
these work disks far exceeds those found on even 
the largest desktop systems.  Once a numerical 
simulation is completed and the results are stored 
on the work disks of an HPC architecture, it is 
very difficult and time consuming to transfer and 
store the results to a user’s local system.  It is best 
to leave the simulation results on the HPC system 
that computed them, and then to use the same 
HPC system that computed the data to also 
process the data for visualization. 
 
In most cases, the large HPC system that a user 
performs a numerical simulation on is in another 
building, or in many cases, another part of the 
country.  Most HPC systems are located at central 
sites where many researchers from many locations 
have access to the computer remotely.  The only 
link between a user’s desktop system that resides 
in their office and the remote HPC system is 
either the commercial Internet or some other 
dedicated network connection.  This tends to be 
the working model for most computational 
researchers. 
 

 
Figure 1:  Client-Server implementation framework 
of the Presto visualizer. 
 
To fit within this framework where visualization 
of data sets residing on remote architectures is 
desired, we have built Presto using a client-server 
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model as shown in Figure 1.  We break the 
application up into two parts called the Presto 
Server and the Presto Client.  The Server runs in 
parallel on the remote HPC architecture where the 
simulation data is residing.  The Server is 
responsible for loading the simulation data set into 
memory, processing it, and creating and/or 
extracting any “visualization constructs” that the 
user requests such as a boundary, cross-section, 
iso-surface, or streamline geometry.  This 
geometry is created by the Server and then sent to 
the Client component for display.  The Server and 
the Client maintain an Internet connection 
throughout the entire visualization session where 
the server responds to requests sent to it by the 
server.  In most cases, geometry such as a cross-
section or iso-surface is created by the Server and 
sent to the Client in a “raw” format, and no 
geometry compression is currently being used but 
may be added in the future. 
 
The Client component handles the graphical user 
interface (GUI) and displays all 3D geometry 
created by the Server component.  Once the 
geometry is loaded on to the client, no 
communication between the client and server is 
required for rotating, scaling or other 
manipulations of the geometry.  The geometry is 
displayed on the Client using the OpenGL 
graphics API.  3D graphics capabilities of both 
UNIX and Windows-based desktop systems are 
very powerful today and can usually display 
thousands to millions of polygons very quickly. 
 
The two components of Presto communicate using 
a traditional socket connection using a special, 
well defined protocol for sending messages, 
parameters, and geometry back and fourth.  Since 
TCP/IP sockets are used, a connection can be 
created between any two points on a network.  
Fast network transfer rates are desirable, but most 
commercial Internet connections have proven to 
be sufficient.  Home DSL and modem connections 
have been tested and have proven to be effective 
for smaller data sets. 
 
This client-server framework for visualizing large 
remote data sets works because for visualization, 
surfaces are created and displayed such as 
boundaries, cross-sections and iso-surfaces.  The 
amount of data needed to represent a surface using 

polygons is an order-of-magnitude smaller than 
the 3D volumetric data which the numerical 
simulation results represent.  Whereas sending the 
original 3D volumetric data (i.e. the entire data 
set) across the network is very time consuming, 
sending surface geometry across the network has 
much fewer requirements. 
 
PARALLEL IMPLEMENTATION 
 
Most large HPC architectures are distributed-
memory parallel computers.  These types of 
supercomputers have the large memory and 
increased computational power needed to solve 
today’s numerical simulations.  To take advantage 
of this type of HPC architecture, the Presto Server 
component is written entirely in parallel using the 
MPI distributed-memory programming library.  
The Presto Server is fully scalable in terms of 
memory used as the number of processors are 
increased.  If a user wishes to visualize a larger 
data set, they simply use more processors.  
Typically, between 4 and 32 are used for 
visualization, but Presto has been tested using up 
to 1024 processors of a Cray T3E.  Since the 
Presto Server is written entirely in C and uses 
MPI for message-passing, the code is portable to 
almost any HPC architecture such as the Cray 
T3E, IBM-SP, SGI Origin servers, and PC 
clusters. 
 
The parallel implementation of the Presto Server 
mirrors that used in our finite element parallel 
flow solvers which have been under development 
and in use since the early 1990’s [1,3-5].  When a 
data set is loaded by the Presto Server, the 
unstructured mesh is read from disk and 
distributed on to the parallel processors in a 
“default” arangement.  Presto then calls the 
ParMetis [6] parallel mesh partitioner to obtain an 
optimal distribution of the mesh elements.  The 
mesh elements are then re-distributed amongst the 
processors in order to realize that optimal 
distribution.  The nodal points of the mesh are 
then aligned with the element partitioning and 
distributed accordingly amongst the processors.  
Finally, other data structures are computed which 
tie the mesh partitions together and help facilitate 
visualization.  This mesh/data distribution has 
been used for unstructured-mesh flow solvers for 
many years and has proven to be very efficient, 
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scales well, and also minimizes the amount of 
inter-processor communication required. 
 
When a geometric object is requested by the 
Client component such as a boundary, cross-
section, or iso-surface, that geometry is 
created/extracted from the 3D mesh in parallel.  
Each processor derives a piece of the surface if 
that construct happens to intersect with its mesh 
elements.  After each processor creates/derives a 
piece of the surface geometry, messages and data 
are exchanged to tie the surface together across 
the processors to form a “complete” or “coupled” 
representation of the surface.  The surfaces are 
always stored on the parallel processors, but are 
also gathered together and sent to the Client 
component for display.  By always storing a 
surface geometry amongst the parallel processors, 
if the user requests a small change such as 
displaying a different variable on a surface, the 
geometry has already been created and stored, and 
only a minimal amount of information needs to be 
collected and sent to the Client component for a 
display update.  Mesh partitioning of a tactical 
unmanned aerial vehicle (TUAV) data set is 
shown in Figure 2.  In this figure can be seen the 
distribution of the boundary surface amongst 200 
parallel processors.  There are 43,000 triangular 
polygons in the geometry depicted in Figure 2, 
and we typically see surface geometry being 
created by the Presto Server anywhere between 
10,000 and 500,000 thousand polygons or more. 
 

 
Figure 2:  Parallel mesh distribution as seen on the 
surface of a tactical unmanned aerial vehicle. 
 
As stated earlier, the parallel implementation of 
the Server component is fully scalable in terms of 
memory.  Unstructured, tetrahedral element 

meshes containing between 20 and 30 million 
elements are routinely visualized using around 32 
processors of a Cray T3E with 512 Mega-bytes of 
memory per processor.  Using 8 processors, a user 
can typically visualize unstructured meshes 
containing up to roughly 4 or 5 million elements.  
On the Cray T3E, 64-bit integers are used, so on 
architectures using the more traditional 32-bit 
integers, larger data sets can be visualized on the 
same number of processors.  In an extreme 
benchmark case, an unstructured mesh containing 
1 billion tetrahedral elements has been visualized 
using 1024 processors of the Cray T3E. 
 
PARALLEL RENDERING CAPABILITIES 
 
For special cases and other advanced visualization 
capabilities, we have built two separate parallel 
rendering engines directly into the Presto Server 
component. 
 
For extremely large data sets such as the 1 billion 
element mesh mentioned in the previous section, 
the number of polygons generated to represents a 
boundary, cross-section, and/or iso-surface can be 
too large to be sent over the Internet and 
processed by the user’s local workstation 
effectively.  In the 1 billion element data set, 
roughly 10 million triangular polygons were 
generated to represent a single boundary object 
and a single iso-surface.  Creation and storage of 
this many polygons or more by the parallel Server 
component is not a difficulty if enough processors 
are used, but it is the transfer and rendering of 
these polygons on a desktop system which 
becomes difficult. 
 
For these cases, we have built a “low-memory” 
option for Presto.  Under this mode-of-operation, 
after a surface geometry is created/extracted by 
the parallel Server component, the polygons are 
left on the parallel processors and only a bounding 
box or a feature-angle description of the geometry 
is downloaded to the Client component for display 
and interactive manipulation.  When the user 
wishes to actually “render” a detailed image of the 
geometry, a request is sent to the Server 
component which then performs polygon 
rendering in parallel.  The rendering algorithm is 
very basic and is based on ray tracing.  Since each 
processor controls only a piece of the overall 
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geometry, each processor renders their polygons.  
All of the images created by each processor are 
then composited together based on depth 
information using a single MPI command to form 
a final image of the geometry.  This image is then 
sent to the Client component for display.  While 
giving up on some user interactivity when using 
this mode-of-operation, a user can now visualize a 
data set of almost any size from a simple desktop 
system. 
 
The other advanced parallel rendering capability 
that we have built into the Presto Server 
component is parallel volume rendering.  Volume 
rendering is an advanced capability which has 
been typically used in the medical field to view 
MRI or CAT scan data [7].  In cases such as these 
where volume rendering has been used, the 
computational grid is highly structured based on 
3D voxel data.  Applying volume rendering to an 
unstructured grid such as those composed of 
arbitrary tetrahedral elements is computationally 
much more expensive to perform and has not been 
used much in the past. 
 
As with the surface rendering capabilities of 
Presto described above, at any point during a 
visualization session, the user can request a 
volume-rendered image of the data.  Each 
processor then independently performs volume 
rendering based on a ray-tracing algorithm on the 
piece of the mesh assigned to it.  This volume data 
(color and depth information) is then assembled in 
parallel to form a single final image.  This image 
is then downloaded to the Client component for 
display.  Typically, a volume-rendered image of a 
CFD data set can be created anywhere between 10 
seconds and 3 minutes depending on the size of 
the image.  Further details about the parallel 
volume rendering algorithms built within the 
Presto Server will be presented at a future date, 
but an example volume-rendered image of airflow 
past a cargo aircraft is shown in Figure 3 where 
the field-variable depicted is velocity magnitude.  
The data set depicted in Figure 3 is based on an 
unstructured mesh consisting of 243 million 
tetrahedral elements. 
 
 
 

EXAMPLES 
 
Three computational fluid dynamics simulations 
are visualized in the examples presented here.  
The meshes used for all simulations were 
generated by our in-house automatic mesh 
generator [4,8] to create unstructured meshes 
composed of tetrahedral elements.  The time-
accurate numerical simulations were performed in 
parallel using our stabilized finite element flow 
solver [1,3-5] on either the Cray T3E or X1.  The 
data sets were all visualized remotely with Presto 
on the Cray T3E. 
 
Figure 3 shows a volume-rendered image of 
airflow past a cargo aircraft in a take-off 
configuration (i.e. high angle of attack, and 
extended flaps).  The variable shown is velocity 
magnitude, and blue colors represent low velocity 
while orange/red colors represent high (close to 
free-stream) velocity.  This data set is based on an 
unstructured mesh composed of 243 million 
tetrahedral elements, and was visualized using 
350 processors of the Cray T3E.  In this case, the 
mesh itself takes-up 10 Giga-bytes of memory, 
and each of the 1000 data file written to disk 
takes-up 1.3 Giga-bytes.  The volume rendering 
highlights many of the airflow characteristics such 
as the large separation region behind the wing, as 
well as the complex turbulent flow field. 
 
Figures 4 and 5 show a rendering of pressure on 
the surface of a TUAV design (reds indicate high 
pressure, blue indicate low pressure), and the 
velocity magnitude at a cross-section near the 
wings of the aircraft.  The Presto GUI can also be 
seen in these figures.  The cross section seen in 
Figure 5 also demonstrates Presto’s ability to 
create actual line contours.  The mesh used for 
this simulation of airflow past a TUAV contains 
roughly 2 million tetrahedral elements and was 
solved on the Cray T3E. 
 
Figure 6 shows velocity vectors at a cross-section 
of airflow past an advanced parachute design.  
The velocity vectors in this figure highlight the 
complexity of the flow field in the wake of the 
parachute.  The mesh for the parachute simulation 
contains roughly 1.7 million tetrahedral elements 
and was solved on the Cray T3E. 
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Finally, Figure 7 shows the TUAV simulation 
again with an iso-surface of velocity magnitude.  
In this figure, rather than showing a solid iso-
surface, a degraded wire-frame geometry mode is 
used to isolate and highlight the three-dimensional 
features of the surface.  The TUAV design, which 
would have been obscured with a solid iso-
surface, can also be seen in this figure. 
 
CONCLUDING REMARKS 
 
We have presented various details about or 
strategy for visualizing large data sets residing on 
remote HPC parallel architectures.  They include a 
client-server implementation framework, parallel 
computing methods, and parallel rendering 
capabilities.  These methods have been 
incorporated within the Presto data visualizer 
which has been in use by various researchers since 
2000.  This visualization tool has proven to be 
very effective at allowing researchers at the 
AHPCRC and ARL to visualize their large 
unstructured mesh data sets from their local 
desktop systems (UNIX or Windows –based) 
connected to various remote HPC systems such as 
the Cray T3E, IBM-SP, SGI systems, and PC-
based clusters. 
 
Future work on these methods and the Presto 
visualization toolkit will include expanding its 
capabilities, adding more features, implementing 
native structured-mesh capabilities, improving 
and expanding the volume rendering capabilities, 
and increased automation and data encryption of 
the client-server data stream. 
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Figure 3:  Volume-rendered image representing velocity magnitude of airflow past a cargo aircraft.  The data 
set depicted here is based on an unstructured mesh containing 243 million tetrahedral elements.  The solution 

was computed on a Cray X1 using 28 processors. 
 
 

 
Figure 4:  Pressure on the surface of a TUAV design.  Red colors indicate high pressure while blue colors 

represent low pressure. 
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Figure 5:  Cross-section depicting velocity magnitude shown around a TUAV design. 

 
 

 
Figure 6:  Cross-section depicting velocity vectors shown around an advanced parachute design. 
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Figure 7.  Iso-surface of velocity magnitude shown in a sparsely-populated wire-frame mode. 

 
 
 


