
1

Large Scale Scientific Visualization on Cray MPP Architectures

Andrew Johnson and Cory Quammen
Army HPC Research Center / Network Computing Services, Inc.

Minneapolis, Minnesota
ajohn@ahpcrc.org

April 24, 2003

ABSTRACT

We present various methods and computational
techniques for visualizing large scientific data sets
from remote locations over the Internet. These
techniques are based on a client-server concept
where the server component is fully implemented
in parallel based on the distributed memory
programming model using MPI. The client
component runs on the user’s desktop system, and
the two components communicate using standard
Internet protocols. These methods and techniques
have been incorporated into the “Presto” data
visualization software and are used to visualize
unstructured mesh data sets such as those found in
computational fluid dynamics or computational
structural mechanics simulations. Advanced
visualization methods such as parallel volume
rendering have also been incorporated into the
Presto visualizer.

INTRODUCTION

Visualizing and interpreting results of large-scale
numerical simulations has become increasingly
difficult as the scale of the calculations being
performed on today’s high performance
computing (HPC) architectures increases
dramatically. In the recent past, numerical
simulations with one or two million mesh
elements were considered large. Today, many
researchers are routinely performing simulations
on parallel HPC architectures with meshes
containing anywhere between 10 and 100 million
elements or larger. These simulations produce
data files on the order of tens to hundreds of Giga-
bytes in size, and these data files must be
interpreted through scientific visualization. Also,
most researchers use HPC architectures which are
not local to their university or research lab. Most

HPC architectures are found at central computing
facilities that maintain and administer a large
system which is used by many researchers from
many locations.

In a “traditional” method to visualize the results of
a numerical simulation, the researcher would
download the computed results over the Internet
on to their local workstation from the remote HPC
systems that generated the data. Once the
simulation files are residing on a local disk, a
workstation-based visualization program is run
which loads the data set into system memory and
processes it for visualization. The user can then
show the boundaries of the problem, possibly
shaded with some simulation variables, or the user
could create cross-sections, iso-surfaces,
streamlines, etc. to help visualize and interpret the
results as they interactively explore the data set.
All of these calculations to create/extract these
visualization constructs are performed locally on
the user’s workstation as well as displaying the
geometry using OpenGL or some other 3D API.
This mode of visualization fails for large
numerical simulations due to several factors:
1) Transferring large data files over the Internet

takes a significant amount of time.
2) Storing the large data files on a local disk can

take a significant amount of space, especially
when several separate simulations are being
stored.

3) The user’s workstation usually does not have
enough memory to load the entire data set.

4) The user’s local workstation may not have
enough computing power to process the entire
data set effectively.

To overcome these visualization bottlenecks and
to develop a toolkit that fits within a remote HPC
model, we have developed the “Presto” data

2

visualizer [1,2]. This program is able to visualize
large unstructured mesh data sets residing on
remote HPC architectures using parallel
computing methods. Fully unstructured meshes
can be processed, and the meshes can contain
tetrahedral (4-nodded), hexahedral (8-nodded),
pyramid (5-nodded), wedge (6-nodded), and also
mixed-element type meshes. Both scalor and
vector data can be visualized, as well as time-
dependent and moving mesh data sets in order to
create animations. Typically, computational fluid
dynamics (CFD) data sets are being visualized by
Presto, but some computational solid mechanics
(CSM) simulations have also been visualized.

Presto is built within a client-server framework
which facilitates remote visualization and data
processing. The Presto Server component is fully
written in parallel based on MPI and runs on the
remote HPC architecture where the simulation
data was computed. The Presto Client component
handles all user interaction and displays all 3D
geometry sent to it by the server. The Client is
designed to be a very “light” application with very
minimal memory requirements so it can be run on
most desktop systems. Both components are built
to be very portable and run on most if not all HPC
architectures and desktop workstations.

A client-server based scientific visualizer that runs
on large HPC systems is essential to our
AHPCRC and Army Research Laboratory (ARL)
partner organizations due to the size and scale of
calculations being performed at those respective
sites. Our research partners at AHPCRC-Clark
Atlanta University have been major users of
Presto and are visualizing data located on the
AHPCRC’s T3E in Minneapolis, MN from their
university site in Atlatna, GA, on a daily basis.
Our partners at ARL have been using Presto’s
volume rendering capabilities to create high-
quality animations for display in immersive
environments. Both of these tasks, unique to
Presto, could not be performed with any other
application. Presto is currently available to all
researchers linked to the AHPCRC data center,
and also installed on several computing systems at
ARL. Presto is also used by researchers at the US
Army Military Academy at West Point.

More details about Presto’s client-server
framework, the parallel implementation, as well as
information about Presto’s parallel rendering
capabilities are discussed in the next sections.

CLIENT-SERVER FRAMEWORK

Large HPC architectures usually have very large
and fast work disks that are used to store
simulation results. The total storage capacity of
these work disks far exceeds those found on even
the largest desktop systems. Once a numerical
simulation is completed and the results are stored
on the work disks of an HPC architecture, it is
very difficult and time consuming to transfer and
store the results to a user’s local system. It is best
to leave the simulation results on the HPC system
that computed them, and then to use the same
HPC system that computed the data to also
process the data for visualization.

In most cases, the large HPC system that a user
performs a numerical simulation on is in another
building, or in many cases, another part of the
country. Most HPC systems are located at central
sites where many researchers from many locations
have access to the computer remotely. The only
link between a user’s desktop system that resides
in their office and the remote HPC system is
either the commercial Internet or some other
dedicated network connection. This tends to be
the working model for most computational
researchers.

Figure 1: Client-Server implementation framework
of the Presto visualizer.

To fit within this framework where visualization
of data sets residing on remote architectures is
desired, we have built Presto using a client-server

3

model as shown in Figure 1. We break the
application up into two parts called the Presto
Server and the Presto Client. The Server runs in
parallel on the remote HPC architecture where the
simulation data is residing. The Server is
responsible for loading the simulation data set into
memory, processing it, and creating and/or
extracting any “visualization constructs” that the
user requests such as a boundary, cross-section,
iso-surface, or streamline geometry. This
geometry is created by the Server and then sent to
the Client component for display. The Server and
the Client maintain an Internet connection
throughout the entire visualization session where
the server responds to requests sent to it by the
server. In most cases, geometry such as a cross-
section or iso-surface is created by the Server and
sent to the Client in a “raw” format, and no
geometry compression is currently being used but
may be added in the future.

The Client component handles the graphical user
interface (GUI) and displays all 3D geometry
created by the Server component. Once the
geometry is loaded on to the client, no
communication between the client and server is
required for rotating, scaling or other
manipulations of the geometry. The geometry is
displayed on the Client using the OpenGL
graphics API. 3D graphics capabilities of both
UNIX and Windows-based desktop systems are
very powerful today and can usually display
thousands to millions of polygons very quickly.

The two components of Presto communicate using
a traditional socket connection using a special,
well defined protocol for sending messages,
parameters, and geometry back and fourth. Since
TCP/IP sockets are used, a connection can be
created between any two points on a network.
Fast network transfer rates are desirable, but most
commercial Internet connections have proven to
be sufficient. Home DSL and modem connections
have been tested and have proven to be effective
for smaller data sets.

This client-server framework for visualizing large
remote data sets works because for visualization,
surfaces are created and displayed such as
boundaries, cross-sections and iso-surfaces. The
amount of data needed to represent a surface using

polygons is an order-of-magnitude smaller than
the 3D volumetric data which the numerical
simulation results represent. Whereas sending the
original 3D volumetric data (i.e. the entire data
set) across the network is very time consuming,
sending surface geometry across the network has
much fewer requirements.

PARALLEL IMPLEMENTATION

Most large HPC architectures are distributed-
memory parallel computers. These types of
supercomputers have the large memory and
increased computational power needed to solve
today’s numerical simulations. To take advantage
of this type of HPC architecture, the Presto Server
component is written entirely in parallel using the
MPI distributed-memory programming library.
The Presto Server is fully scalable in terms of
memory used as the number of processors are
increased. If a user wishes to visualize a larger
data set, they simply use more processors.
Typically, between 4 and 32 are used for
visualization, but Presto has been tested using up
to 1024 processors of a Cray T3E. Since the
Presto Server is written entirely in C and uses
MPI for message-passing, the code is portable to
almost any HPC architecture such as the Cray
T3E, IBM-SP, SGI Origin servers, and PC
clusters.

The parallel implementation of the Presto Server
mirrors that used in our finite element parallel
flow solvers which have been under development
and in use since the early 1990’s [1,3-5]. When a
data set is loaded by the Presto Server, the
unstructured mesh is read from disk and
distributed on to the parallel processors in a
“default” arangement. Presto then calls the
ParMetis [6] parallel mesh partitioner to obtain an
optimal distribution of the mesh elements. The
mesh elements are then re-distributed amongst the
processors in order to realize that optimal
distribution. The nodal points of the mesh are
then aligned with the element partitioning and
distributed accordingly amongst the processors.
Finally, other data structures are computed which
tie the mesh partitions together and help facilitate
visualization. This mesh/data distribution has
been used for unstructured-mesh flow solvers for
many years and has proven to be very efficient,

4

scales well, and also minimizes the amount of
inter-processor communication required.

When a geometric object is requested by the
Client component such as a boundary, cross-
section, or iso-surface, that geometry is
created/extracted from the 3D mesh in parallel.
Each processor derives a piece of the surface if
that construct happens to intersect with its mesh
elements. After each processor creates/derives a
piece of the surface geometry, messages and data
are exchanged to tie the surface together across
the processors to form a “complete” or “coupled”
representation of the surface. The surfaces are
always stored on the parallel processors, but are
also gathered together and sent to the Client
component for display. By always storing a
surface geometry amongst the parallel processors,
if the user requests a small change such as
displaying a different variable on a surface, the
geometry has already been created and stored, and
only a minimal amount of information needs to be
collected and sent to the Client component for a
display update. Mesh partitioning of a tactical
unmanned aerial vehicle (TUAV) data set is
shown in Figure 2. In this figure can be seen the
distribution of the boundary surface amongst 200
parallel processors. There are 43,000 triangular
polygons in the geometry depicted in Figure 2,
and we typically see surface geometry being
created by the Presto Server anywhere between
10,000 and 500,000 thousand polygons or more.

Figure 2: Parallel mesh distribution as seen on the
surface of a tactical unmanned aerial vehicle.

As stated earlier, the parallel implementation of
the Server component is fully scalable in terms of
memory. Unstructured, tetrahedral element

meshes containing between 20 and 30 million
elements are routinely visualized using around 32
processors of a Cray T3E with 512 Mega-bytes of
memory per processor. Using 8 processors, a user
can typically visualize unstructured meshes
containing up to roughly 4 or 5 million elements.
On the Cray T3E, 64-bit integers are used, so on
architectures using the more traditional 32-bit
integers, larger data sets can be visualized on the
same number of processors. In an extreme
benchmark case, an unstructured mesh containing
1 billion tetrahedral elements has been visualized
using 1024 processors of the Cray T3E.

PARALLEL RENDERING CAPABILITIES

For special cases and other advanced visualization
capabilities, we have built two separate parallel
rendering engines directly into the Presto Server
component.

For extremely large data sets such as the 1 billion
element mesh mentioned in the previous section,
the number of polygons generated to represents a
boundary, cross-section, and/or iso-surface can be
too large to be sent over the Internet and
processed by the user’s local workstation
effectively. In the 1 billion element data set,
roughly 10 million triangular polygons were
generated to represent a single boundary object
and a single iso-surface. Creation and storage of
this many polygons or more by the parallel Server
component is not a difficulty if enough processors
are used, but it is the transfer and rendering of
these polygons on a desktop system which
becomes difficult.

For these cases, we have built a “low-memory”
option for Presto. Under this mode-of-operation,
after a surface geometry is created/extracted by
the parallel Server component, the polygons are
left on the parallel processors and only a bounding
box or a feature-angle description of the geometry
is downloaded to the Client component for display
and interactive manipulation. When the user
wishes to actually “render” a detailed image of the
geometry, a request is sent to the Server
component which then performs polygon
rendering in parallel. The rendering algorithm is
very basic and is based on ray tracing. Since each
processor controls only a piece of the overall

5

geometry, each processor renders their polygons.
All of the images created by each processor are
then composited together based on depth
information using a single MPI command to form
a final image of the geometry. This image is then
sent to the Client component for display. While
giving up on some user interactivity when using
this mode-of-operation, a user can now visualize a
data set of almost any size from a simple desktop
system.

The other advanced parallel rendering capability
that we have built into the Presto Server
component is parallel volume rendering. Volume
rendering is an advanced capability which has
been typically used in the medical field to view
MRI or CAT scan data [7]. In cases such as these
where volume rendering has been used, the
computational grid is highly structured based on
3D voxel data. Applying volume rendering to an
unstructured grid such as those composed of
arbitrary tetrahedral elements is computationally
much more expensive to perform and has not been
used much in the past.

As with the surface rendering capabilities of
Presto described above, at any point during a
visualization session, the user can request a
volume-rendered image of the data. Each
processor then independently performs volume
rendering based on a ray-tracing algorithm on the
piece of the mesh assigned to it. This volume data
(color and depth information) is then assembled in
parallel to form a single final image. This image
is then downloaded to the Client component for
display. Typically, a volume-rendered image of a
CFD data set can be created anywhere between 10
seconds and 3 minutes depending on the size of
the image. Further details about the parallel
volume rendering algorithms built within the
Presto Server will be presented at a future date,
but an example volume-rendered image of airflow
past a cargo aircraft is shown in Figure 3 where
the field-variable depicted is velocity magnitude.
The data set depicted in Figure 3 is based on an
unstructured mesh consisting of 243 million
tetrahedral elements.

EXAMPLES

Three computational fluid dynamics simulations
are visualized in the examples presented here.
The meshes used for all simulations were
generated by our in-house automatic mesh
generator [4,8] to create unstructured meshes
composed of tetrahedral elements. The time-
accurate numerical simulations were performed in
parallel using our stabilized finite element flow
solver [1,3-5] on either the Cray T3E or X1. The
data sets were all visualized remotely with Presto
on the Cray T3E.

Figure 3 shows a volume-rendered image of
airflow past a cargo aircraft in a take-off
configuration (i.e. high angle of attack, and
extended flaps). The variable shown is velocity
magnitude, and blue colors represent low velocity
while orange/red colors represent high (close to
free-stream) velocity. This data set is based on an
unstructured mesh composed of 243 million
tetrahedral elements, and was visualized using
350 processors of the Cray T3E. In this case, the
mesh itself takes-up 10 Giga-bytes of memory,
and each of the 1000 data file written to disk
takes-up 1.3 Giga-bytes. The volume rendering
highlights many of the airflow characteristics such
as the large separation region behind the wing, as
well as the complex turbulent flow field.

Figures 4 and 5 show a rendering of pressure on
the surface of a TUAV design (reds indicate high
pressure, blue indicate low pressure), and the
velocity magnitude at a cross-section near the
wings of the aircraft. The Presto GUI can also be
seen in these figures. The cross section seen in
Figure 5 also demonstrates Presto’s ability to
create actual line contours. The mesh used for
this simulation of airflow past a TUAV contains
roughly 2 million tetrahedral elements and was
solved on the Cray T3E.

Figure 6 shows velocity vectors at a cross-section
of airflow past an advanced parachute design.
The velocity vectors in this figure highlight the
complexity of the flow field in the wake of the
parachute. The mesh for the parachute simulation
contains roughly 1.7 million tetrahedral elements
and was solved on the Cray T3E.

6

Finally, Figure 7 shows the TUAV simulation
again with an iso-surface of velocity magnitude.
In this figure, rather than showing a solid iso-
surface, a degraded wire-frame geometry mode is
used to isolate and highlight the three-dimensional
features of the surface. The TUAV design, which
would have been obscured with a solid iso-
surface, can also be seen in this figure.

CONCLUDING REMARKS

We have presented various details about or
strategy for visualizing large data sets residing on
remote HPC parallel architectures. They include a
client-server implementation framework, parallel
computing methods, and parallel rendering
capabilities. These methods have been
incorporated within the Presto data visualizer
which has been in use by various researchers since
2000. This visualization tool has proven to be
very effective at allowing researchers at the
AHPCRC and ARL to visualize their large
unstructured mesh data sets from their local
desktop systems (UNIX or Windows –based)
connected to various remote HPC systems such as
the Cray T3E, IBM-SP, SGI systems, and PC-
based clusters.

Future work on these methods and the Presto
visualization toolkit will include expanding its
capabilities, adding more features, implementing
native structured-mesh capabilities, improving
and expanding the volume rendering capabilities,
and increased automation and data encryption of
the client-server data stream.

REFERENCES

1. A. Johnson, “Automatic mesh generation,

geometric modeling, and visualization tool
development efforts at the Army HPC Research
Center / NetworkCS”, Proceedings of the DoD
HPCMP Users Group Conference 2000,
Albuquerque, New Mexico (2000).

2. A. Johnson, C. Quammen, “Presto Visualizer 2.0,
Parallel scientific visualization of remote data sets:

User Guide”, Tech Report, Army HPC Research
Center / NetworkCS, Inc., 2002.

3. M. Behr, A. Johnson, J. Kennedy, S. Mittal, and T.
Tezduyar, “Computation of incompressible flows
with implicit finite element implementations on
the Connection Machine”, Computer Methods in
Applied Mechanics and Engineering, 108 (1993)
99 – 118.

4. A. Johnson and T. Tezduyar, “Parallel
computation of incompressible flows with
complex geometries”, International Journal for
Numerical Methods in Fluids, 24 (1997) 1321 –
1340.

5. A. Johnson, “Computational fluid dynamics
applications on the Cray X1 architecture:
Experiences, algorithms, and performance
analysis”, Cray User Group Conference 2003
Proceedings, May 2003.

6. G. Karypis and V. Kumar, ‘METIS: unstructured
graph partitioning and sparse matrix ordering
systems’, Tech. Report, Department of Computer
Science, University of Minnesota, 1995; METIS is
available on the WWW.

7. B. Lichtenbelt, R. Crane, and S. Naqvi,
Introduction to Volume Rendering, Prentice Hall,
1998.

8. A. Johnson and T. Tezduyar, “Advanced mesh
generation and update methods for 3D flow
simulations”, Computational Mechanics, 23
(1999) 130 – 143.

ACKNOWLEDGEMENTS

The research reported in this document was
performed in connection with contract DAAD19-
03-D-0001 with the U.S. Army Research
Laboratory. The views and conclusions contained
in this document are those of the authors and
should not be interpreted as presenting the official
policies or positions, either expressed or implied,
of the U.S. Army Research Laboratory or the U.S.
Government unless so designated by other
authorized documents. Citation of manufacturer’s
or trade names does not constitute an official
endorsement or approval of the use thereof. The
U.S. Government is authorized to reproduce and
distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

7

Figure 3: Volume-rendered image representing velocity magnitude of airflow past a cargo aircraft. The data
set depicted here is based on an unstructured mesh containing 243 million tetrahedral elements. The solution

was computed on a Cray X1 using 28 processors.

Figure 4: Pressure on the surface of a TUAV design. Red colors indicate high pressure while blue colors

represent low pressure.

8

Figure 5: Cross-section depicting velocity magnitude shown around a TUAV design.

Figure 6: Cross-section depicting velocity vectors shown around an advanced parachute design.

9

Figure 7. Iso-surface of velocity magnitude shown in a sparsely-populated wire-frame mode.

