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           Sorting on the Cray X1

                                    Helene E. Kulsrud
                                      CCR-P

Introduction

Since 1978 and our studies of the Cray I, CCR has used sorting of
63 and 64 bit numbers as a benchmark. Therefore it was expected
that we would be revisiting our sorting programs when we
received our new Cray X1.  In an effort to help Cray, Inc. produce
the necessary software for the new architecture, we agreed to
provide sorting programs for our site and for the Cray library.
This seemed like any easy project since we had revised our CCR
software libraries to be portable and had ported them to various
other architectures such as T3E, Alphas, Sparcs and Origins.  Each
porting has required changes due to assumptions about word sizes
(particularly for C programs), retired language constructs and
increasing strictness of current compilers.  We were prepared for
some minor changes.

We can report that compiling and execution of the portable sorting
programs was successful and did require a few changes. But the
resultant execution times for the programs were not satisfactory.
We therefore embarked on a project to improve the execution
times. In this paper, we will show how codes were improved, We
will also suggest further improvements both to our own codes and
to Cray compilers.

Sorting Algorithms

There are many popular sorting methods such as:

       Heap Sort
       Bubble Sort
       Insertion Sort
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       Shell Sort
       Mergesort
       Quicksort
       Radix Sort
       Radix Exchange Sort
       etc………
       Parallel Sorts etc., etc…..

In our experience and in the literature[1], however, only three sorts
are useful for large data sets.  What is meant by large is vague but
certainly 500 words or elements is meant.  In this paper, three of
the many sorts in our library, will be presented.  Each sort
illustrates different aspects of the machine. These are:

QKSORT   -  A scalar sort(radix exchange)
PSORT      -  A vectorized sort(radix)
MSORT     -  A multiprocessor sort

QKSORT

Radix Exchange sort is a variation on the standard popular
Quicksort. In Quicksort, a pivot element is chosen.  There are
various methods suggested for choosing the pivot. The data is then
divided into two parts one of which contains all elements which
are less than or equal to the pivot and the other part which contains
all elements which are greater than the pivot.  Starting from the
first and last elements in the array, elements which belong to the
less than/equal group are interchanged with elements which belong
to the greater than group.  This is done one element at a time.
When the exchange is completed there are two data groups which
can then be sorted separately.
This is a recursive process as each group is divided in two until
only one word remains in each group. In Radix Exchange sort, the
two groups are created by finding the leftmost bit that contains
both zeros and ones and then using the single bits as the pivot
elements.
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It is natural to consider that when a set of numbers is rearranged
then the two sub sorts could be carried out as separate computer
processes. That is, after the data is separated, a process can be
spawned so that two, then four, etc. sorts occur simultaneously.
We have programmed this in the past and find that the cost of
spawning processes requires fairly large data sets. (i.e. 1 million
words). This is due to the high cost of process creation.

Our program to sort using radix exchange is called QKSORT.  It
consists of two basic parts.  The first part which carries out the
interchange of the elements, and the second part which does an
insertion sort for sets which contain a number of elements less and
or equal to L, the number of elements in a vector register (64 or
128).  To use the power of a vector machine, we turn these scalar
algorithms into vector algorithms.

The basic idea for a vector version of the interchange is to load one
vector register with the first group of L elements and another
vector register with the last group of L elements.  We then use
mask instructions to find which elements do not belong in the
groups, compress these elements into a group and create two new
vectors which have only the correct elements. The two loaded
vectors will be used up at different rates which results in several
branches in the program.  We must also load vectors before they
are  needed so as not to delay the computation.

The basic idea for the short sort is to load a vector register with the
L or less elements for an insertion sort.   We then compare each
element,  E against all the other elements in the list to compute
how many other words are less than or equal to E, say M, and
place E at the Mth position in another vector register .  In order to
deal with ties, 1 is then added to E. When all the elements have
been processed, the new vector is complete and is stored. Since
current compilers cannot produce this kind of code, the two parts
are written in assembly language.

Table I gives the calculated times for the ported version of
QKSORT and the new version with the assembly language
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programs.  All times in this paper are presented in seconds. The
tests  in Table I were run for 53 bit numbers randomly generated
numbers. These programs use only one SSP.

                          Table I
                       Improving QKSORT

Table 2 compares QKSORT on the X1 with some other machines
for randomly generated 63 bit numbers.  The Alpha, an
outstanding scalar machines produces the best code. The Cray X1
runs in about half  the T90  time and should be able to do better.

  1.824  .425  .205. 038.018.003.002New

 27.208 5.9872.784.467 .217.037.016Port

Version

4,000,0001,000,000500,000100,00050,00010,0005,000Count
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Table 2 
QKSORT in 2003

5.0082.426.449. 215.039.019.004X1

2222....7777222200001111....222200000000....111177775555....000088882222....000011114444....000000007777....000000001111Alpha 
EV6.8

5.7512.702.453.208.035.017.002Alpha

EV6.7

8.3644.254.831.411.081.040.009T90

1.024. 510.079.037.006T3E

10,000,0005,000,0001,000,000500,000100,00050,00010,000Size
Machine

PSORT

PSORT is a program which implements the radix sort method.
The idea here is to choose a pocket of Q bits and count how many
of the elements have each of the values the pocket will have. We
start with the right most bits in the word. Given the counts in the
pocket, we then compute the address in a second storage area at
which the elements which contain this bit pattern will be stored.
Then we move each element into the place indicated by the
address calculation and add one to the address table. In our
implementation of this algorithm we provide an introductory
program which calculates the optimum size pocket for the number
of elements being processed.  Radix sort requires twice as much
storage as QKSORT and consists of three parts: counting of the
number of elements in a pocket, address calculation and moving of
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the elements into the new array. This process is repeated as many
times as the pocket size fits in the word length.  For example, if the
pocket size was 16, the procedure would be executed four times.

On the Cray X1, for large numbers of elements, say 10,000, the
address calculation uses the most computer time.

               word[j+1]  = word[j+1] + word[j]

This is because the compiler brings each of the words into S
registers and stores back from S registers.  We can improve this
code by the loading L words in a vector register, calculating the
sums in the S registers and storing from the S register. Storing
back from a V register takes more computer time. We call this the
V-S method.

There is also another way to make this calculation.  We create two
loops as follows where n is the number of elements to be sorted:

                  k = (n – 1)/63 +1

 for(j=1; j<k; j++) for(i=0; i<63; i++)
                      word[k*i+j+1]  = word[k*i+ j+1] + word[k*i+j]

for(i=1; i<63; i++) for(j=1; j<k; j++)
                      word[k*i+j]  = word[k*i+ j] + word[k*i]

We call this the 2V method. Note that we use 63 instead of the
more natural 64 which is a bad stride for vectors. Table 3 shows
how using these two methods improve the code over the ported
version.  Table 3 uses 53 bit numbers and Table 4 uses 63 bit
numbers.
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Table 3
Improving PSORT

.7838.2484.1725.0327.0159.0028.0013V-S Loop

1.2252.4972.4142.0722.0360.0047.0049Ported

.7080.2015.1273.0210.0092.0027.00122V  Loops

4,000,0001,000,000500,000100,00050,00010,0005,000Count

Version

We find that PSORT runs faster than QKSORT for approximately
500 elements on a T90 and an X1.  Table 4 compares the X1 with
the other computers.  We note that the X1 is slower than the T90.
We believe this to be due to the compiled code and hope that
future compiler improvements will solve this problem. The other
machines do not have vectors and on these machines we usually
use another library version of radix sort.

MSORT

MSORT is a multiprocessor sort which was developed for the
T3D. This particular sort starts with the same number of elements
in each processor and ends with the same number of elements in
each processor. The lowest numbered processor then has the
smallest elements.
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Table 4
PSORT in 2003

2.0021.024.215.133.023.011.003X1

19.6309.1581.043.431.077.026.003Alpha 
EV6.8

37.43616.7492.9211.447.211.081.004Alpha 
EV6.7

1111....666600000000    ....888800002222....111177770000....111100009999....000022224444....000011114444....000000004444T90

6.371.3.307.747.377.037T3E

10,000,0005,000,0001,000,000500,000100,00050,00010,000Size 
Machine

There are three phases to this sort. First each processor uses
either QKSORT or PSORT to sort the elements in its own buffer.
Then information about the number of elements in each 1/8 of the
memory is passed to the head processor.  After some calculation
and requests for more detailed information, ranges are assigned to
each processor.  In the third phase, each processor sends the proper
elements to the other processors. Each processor does a merge on
the data passed to it. As the number of processors goes up, this
phase becomes more time consuming.

On the X1, SHMEM is used for communication between
processors.  On the T3E we use QKSORT for the first phase, On
the X1 it seems better to use PSORT since it is faster and as double
memory size is required for the merge phase no extra memory is
needed.  Table 5 compares the T3E and X1 for various numbers of
processors. The limit of 24 processors is used only because that
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was the number of X1 processors available at the time of the tests.
The table points out a start up cost and that the SHMEM on the X1
is slower since we know that the transfer speed and the sort times
are faster on the X1.  These SHMEM times have improved since
January when this effect was first noticed but there needs to be
more work in this area.

Table 5 - MSORT in 2003

1.098.099.068.004T3E - 16

2.292.348.048.042X1  - 16

.650.064.014X1   - 4

4.011.492.050.033X1   - 8

.755.074.085.009T3E - 24

1.661.142.025.002T3E - 8

1111....666677774444....111199991111....000022226666.109X1  - 24

.955.091....000011113333X1   - 2

.263.023.002T3E - 4

.488.040.003T3E - 2

10,000,0001,000,000100,00010,000Size

Conclusions

Though we had hoped to use the improvement of these programs
as a starting point to write new multistreaming versions, this has
not happened.  We are planning  a summer program which
includes looking at new sorting techniques. However, the question
remains as to whether it makes sense to create multistreaming
versions of these codes considering that multistreaming may not be
available on future architectures.  However, we have already
considered some interesting ideas for using MSPs rather than one
SSP.
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Much has been gained from spending time on these sorting
programs.  First, we helped critique the X1 software and send
information to Cray.  We created a good set of sorting routines for
the X1.  We found areas where the compilers needed to be
improved – some of those improvements have been made, some
are being considered.  We learned some of the great features of the
X1 such as memory bandwidth, additional registers and the ability
to carry out certain operations in different types of registers
thereby reducing the movement of variables from one type of
register to another. Sorting remains important for research and
production.

[1]  Robert Sedgewick, Algorithms in C,  Addison-Wesley, 1990.


