

Application Scheduling

Richard Lagerstrom 15 MAY 2003

SLIDE **1** 6/2/03

Application Scheduling Richard Lagerstrom

de o Calumburg, Ghila

The 45th CUG Conference

Scheduling Hierarchy and Scope

Name	Scope	Example
Grid	Global	Globus
Batch	Organizational, Departmental, or Cluster	PBS Pro
Placement	Single System, Multinode	PScheD
Process	Single Node, Multiprocessor	UNICOS/mp
SLIDE 2 6/2/03	Application Scheduling Richard Lagerstrom CUG 2003 / Columbus, Ohio, USA	

History

- The 45th CUC Conference CRAY USER GROUP OSC
- Psched was ported from Cray T3E
- Enhanced to do initial placement
- Modified to support multi-CPU nodes
- User and admin. displays through psview
- More displays with apstat
- Cray X1 kernel cannot initiate applications without the assistance of psched

Introduction

- Placement strategies
- Placement requirements
- Starting an application
- Gang scheduling
- Migration
- The PBSpro interface

Placement Strategies

Many configurable options

- Equalize node workload
- Minimize node fragmentation
- Maximize processor utilization

Application Scheduling Richard Lagerstrom

LUG Conference

Placement Requirements

- Power-of-2 MSP/SSP per node
- Memory loaded when executing Accelerated applications need:
- Global address space ID (GASID) for offnode accelerated memory references
- Node contiguity

Six-node Example

- The 45th CUG Conference CRAY USER GROUP OSC
- Each node has 4 MSPs and 16GB memory
- Five with application flavor
- One with operating system and support flavors

Application Scheduling Richard Lagerstrom CUG 2003 / Columbus, Ohio, USA

Application Mapping

How many PEs are allocated to a node?

- User option to choose PEs/node
- Psched will pick a mapping by default
- Memory usage per PE is the major reason for user specified mapping

Mapping Examples

Support node phase

- Run aprun -n x -N y a.out
- aprun checks for option errors
- aprun sends an RPC request to psched to post the app for placement
- aprun waits for a signal to continue
- Psched gets PBSpro queue limits
- Psched creates an apteam and joins aprun

- Psched generates placement information
- Psched sends placement information to the kernel

CUG Conference

• On the next time slice psched sends a start signal to aprun to exec() PE 0 of the app

Application Startup

Application node(s) phase

- Execution begins in startup() which sets up the shared memory environment
- All PEs of the app are created with a placed fork()
- App execution begins in main()

Application Scheduling Richard Lagerstrom CUG 2003 / Columbus, Ohio, USA

- Apps are time sliced by psched
- Memory of inactive apps may page out

45th CUG Conference

Memory of active apps is locked in

Five gangs – three parties

Three time slice example

SLIDE **16** 6/2/03

Application Scheduling Richard Lagerstrom

Five gangs – three parties

First time slice

SLIDE **17** 6/2/03 Application Scheduling Richard Lagerstrom

Five gangs – three parties

Second time slice

SLIDE **18** 6/2/03 Application Scheduling Richard Lagerstrom

Five gangs – three parties

Third time slice

SLIDE **19** 6/2/03 Application Scheduling Richard Lagerstrom

- A target place list is generated
- The app is disconnected to stop execution and unlock its memory pages
- The target place list is given to the kernel
- The app is connected
- Memory pages are moved from the origin nodes or disk to the target nodes
- Execution begins on the target nodes

SLIDE 20 6/2/03 Application Scheduling Richard Lagerstrom CUG 2003 / Columbus, Ohio, USA

The 45th CUG Conference CRAY USER GROUP & OSC FLIGHT/TOINISTICITY Bury 18-19, 1988 - Galanding, 600

- Each PE exits
- PE 0 waits for all other PEs to exit
- When PE 0 exits the kernel detects the PE count is zero
- The kernel sends psched the app exit signal
- Psched deletes the kernel's apteam entry and its internal information about the app

---end----

SLIDE 23 6/2/03

Application Scheduling Richard Lagerstrom