

COMPLIMENTS • CON COMPLIMENTI • SALUDOS • MIT EMPFEHLUNG • AVEC COMPLIMENTS

 Fortran 2000

Bill Long

16-May-2003

Fortran 2000

Fortran 2000 is the next major revision of Fortran.

Expect final version in 2004. This presentation is

based on the April 29, 2003 03-007. THIS DRAFT

MAY NOT MATCH THE FINAL DOCUMENT.

Major new features:

• C interoperability

• Object oriented programming

• IEEE support

• Asynchronous I/O

Presentation organization

• Basic Syntax

• Declarations

• Procedures

• Basic Operations

• I/O

• Future

Basic Syntax

Basic Syntax

Slide Notation

Code examples have colored text:

BLACK - Fortran 95 standard conforming
PURPLE - Fortran 2000 feature already implemented
BLUE - Fortran 2000 feature for early implementation
RED - Fortran 2000 feature for later implementation
ORANGE - C source code

Examples:

type, bind(c) :: struct
use, intrinsic :: ieee_exceptions
type, extends(foo) :: bar

Basic Syntax changes

Names up to 63 characters long.

Up to 255 continuation lines allowed.

Use [] as alternative to (/ /) for array constructors.

Named constants as parts of complex constants.
 real,parameter :: zero = 0.0, one = 1.0
 complex :: eye
 eye = (zero , one)

Printable ASCII characters now required in character set.
 \ [] { } ` ^ | # @ ~

Declarations

Declarations

Module object access; protection

Protected attribute: integer, protected :: ncpus

Mixed component access: type,private :: foo
 integer,public :: bar1
 integer,private :: bar2
 end type foo

Public entities of private type: type(foo),public :: x

Allocatable components

Allocatable components: type :: foo
 real,allocatable :: bar(:)
 end type foo

Contrast with f95: type :: foo_old
 real,pointer :: bar(:)
 end type foo_old

Allocatable character scalars

Allocatable character scalars are allowed.

character(len = :),allocatable :: string

allocate(character(16) :: string)

Intrinsic Modules

Intrinsic Modules : supplied as part of compiler package

use,intrinsic :: iso_c_binding

use,intrinsic :: ieee_exceptions

use,intrinsic :: ieee_arithmetic

use,intrinsic :: ieee_features

use,intrinsic :: iso_fortran_env

ISO_C_BINDING module

The ISO_C_BINDING module contains definitions used for C
interoperability. A subset includes KIND values:

c_signed_char, c_short, c_int, c_long, c_long_long
c_float, c_double, c_long_double
c_float_complex, c_double_complex, c_long_double_complex
c_char

Some character constants:

c_null_char, c_form_feed, c_new_line, c_carriage_return

New types:

c_ptr, c_funptr

ISO_FORTRAN_ENV module

The ISO_FORTRAN_ENV module contains constants that
characterize the external environment.

I/O Units:

input_unit, output_unit, error_unit

I/O Status:

iostat_end, iostat_eor

Storage Unit sizes:

numeric_storage_size, character_storage_size, file_storage_size

Interoperation with C global objects

module global_data
 use,intrinsic :: iso_c_binding

 type,bind(c) :: flag_type
 integer(c_long) :: ioerror_num, fperror_num
 end type flag_type

 type(flag_type),bind(c) :: error_flags

end module global_data

typedef struct{ long ioerror_num, fperror_num; } flag_type

flag_type error_flags;

Interoperation with C global objects

module global_data2
 use,intrinsic :: iso_c_binding
 integer(c_int),bind(c, name=“FunnyCaps”) :: funnycaps

 common /block/ r, s
 common /tblock/ t
 real(c_float) :: r,s,t
 bind(c) :: /block/, /tblock/

end module global_data2

int FunnyCaps;
struct {float r, s} block;
float tblock;

Parameterized Derived Types

Parameterized Derived Types:

 type :: tridiag (k, n)
 integer, kind :: k ! k must be known at compile time
 integer, length :: n ! n can to deferred to run time
 real(k) :: upper(n-1)
 real(k) :: diag(n)
 real(k) :: lower(n-1)
 end type tridiag

 integer,parameter :: rk = selected_real_kind(12,100)
 type(tridiag(8,20)) :: mat20
 type(tridiag(rk,:)),allocatable :: mat(:)

 allocate(type(tridiag(rk,20)) :: mat(4)) ! dynamic allocation

Extended types

Types that do not have the sequence or bind(c) attribute may be
extended, implementing a single inheritance scheme for OOP.

type :: dna
 integer,allocatable :: ascii_text(:)
 integer :: length
end type dna

type,extends(dna) :: ocdna
 integer :: ssdid, ssdsize, state
end type ocdna

The type ocdna has inherited components ascii_text, length, as
well as a hidden component named dna of type(dna) that is just
the parent components.

Volatile attribute

VOLATILE is an attribute that standardizes an existing extension.

integer, volatile :: flag

The memory associated with a volatile object may be modified
by means not visible in the current program unit. The compiler
must reload the value from memory for each use.

Initialization expressions

Many of the restrictions on initialization expressions are removed.
In particular, references to most intrinsic functions are allowed.

real,parameter :: pi = acos(-1.)

Import statement

Interface blocks are local scoping units. IMPORT allows use
of definitions from the host scoping unit.

type foo
 integer :: foo_int
end type foo

interface
 function bar(x) result(bar_res)
 import foo
 type(foo) :: x
 integer :: bar_res
 end function bar
end interface

International character sets

Support is added for an extended character set for the values of
character variables and constants.

Kind values:

 selected_char_kind(NAME)
 where NAME = “DEFAULT”, “ASCII”, or “ISO_10646”

ISO_10646 specifies the UCS-4 (32-bit) character set.

integer,parameter :: ucs4=selected_char_kind(‘iso_10646’)
character(len=5,kind=ucs4) :: c

c = ucs4_” ”

Procedures

Procedures

Allocatable dummy arguments

Dummy arguments can be allocatable, allowing a procedure to
allocate space for returned data arrays.

integer,allocatable :: db(:)
call sub(db, nwords)

subroutine sub(db,n)
integer,allocatable :: db(:)
integer :: n
read *, n
allocate(db(n))
read *, db
end subroutine sub

Allocatable function results

Allocatable function results are a variation on allocatable dummy
arguments.

function foo(x) result(foor)
 real,dimension(:),intent(in) :: x
 real,dimension(:),allocatable :: foor
 …
end function foo

Intent for pointer arguments

Intent specification for pointer dummy arguments is allowed.
The intent applies to the association status of the pointer, not
to the definition status of a target of the pointer.

subroutine sub(p,dat)
integer,pointer,intent(in) :: p(:)
integer,target :: dat(10)

p = 1 ! OK.
allocate(p(20)) ! illegal - changes the target of p.
p => dat ! illegal - changes the target of p.

end subroutine sub

Interoperating with C functions

Interface blocks interoperate with C function prototypes.

use,intrinsic :: iso_c_binding
interface
 function foo (prt, val),bind(c,name=“Foo”) result (bar)
 import :: c_int, c_long
 integer(c_int) :: prt, bar
 integer(c_long),value :: val
 end function foo
end interface
integer(c_int) :: x,n ; integer(c_long) :: y
…
 n = foo(x,y)

int Foo(int *prt, long val);

Procedure statement

The PROCEDURE statement is an extension of the module
procedure statement from f90, used to define a generic interface.
The specific procedures do not have to be contained in a module.
Only their interfaces must be available.

interface sgemm
 procedure sgemm_44, sgemm_48, sgemm_84, sgemm_88
 procedure cgemm_44, cgemm_48, cgemm_84, cgemm_88
end interface sgemm

interface dgemm
 procedure sgemm_44, sgemm_48, sgemm_84, sgemm_88
 procedure cgemm_44, cgemm_48, cgemm_84, cgemm_88
end interface dgemm

Procedure declaration statement

The PROCEDURE statement can declare names to be external
procedures, identify an interface, and declare a procedure pointer.

abstract interface; function fun_r (x)
 real,intent(in) :: x
 real :: fun_r
 end function fun_r; end interface

procedure(fun_r) :: gamma, bessel

interface ; subroutine sub_r(x); real :: x
 end subroutine sub_r; end interface

procedure(sub_r) :: sub
procedure(real) :: psi ! Equivalent to real,external :: psi

Procedure pointers

The PROCEDURE statement can be used to specify procedure
pointers. Procedure pointers are allowed as components of
derived types.

procedure(fun_r),pointer :: special_fun => null()

special_fun => gamma

type proc_ptr
 procedure(fun_r),pointer :: fun
end type proc_ptr

type(proc_ptr),dimension(10) :: special

ans = special(i)%fun(arg)

Type bound procedures

Procedures can be bound to a type, automatically carrying the
interface along with each variable of that type. Procedures are
declared with either the PROCEDURE, GENERIC, or FINAL
statements.

type strange_int
 integer :: n
contains
 generic :: operator(+) => strange_int_add_oper
end type

The interface for strange_int_add_oper must be supplied either
explicitly or by defining the function in the same module.

Polymorphic objects

The CLASS type specifier is used to declare polymorphic objects.
These declarations must be for dummy arguments, or have the
allocatable or pointer attribute.

function strange_int_add_oper (a,b) result (c)
 class(strange_int),intent(in) :: a,b
 type(strange_int) :: c

 c%n = iand(a%n + b%n, 1)
end function strange_int_add_oper

The variables a and b are type compatible with actual arguments
of type strange_int or any extension of strange_int.

class(*) :: x ! X is type compatible with any type object.

Select Type construct

The SELECT TYPE construct allows alternate execution paths
based on the actual type of a polymorphic object.

type,extends(strange_int) :: strange_int_m
 integer :: m
end type strange_int_m

select type(a)
type is (strange_int)
 c%n = iand(a%n + b%n, 1)
class is (strange_int)
 i = min(a%m, b%m)
 c%n = iand(a%n + b%n, 2**i - 1)
 c%m = i
end select

Finalizers

Finalizers are a special type bound procedure that is executed
whenever an object of a derived type becomes undefined. This
would include the initial state of an intent(out) dummy argument,
or the state of an unsaved local variable at procedure exit.

type foo
 real,pointer,dimension(:) :: bar
contains
 final :: foo_cleanup
end type

subroutine foo_cleanup(x)
 class(foo) :: x
 deallocate(x%bar)
end subroutine foo_cleanup

New intrinsic functions

Optional KIND arguments added to many functions that return
default integer results. Example: SIZE.

MAX and MIN allow character arguments.

EXTENDS_TYPE_OF and SAME_TYPE_AS, to inquire about
extended types

NEW_LINE returns the value of the newline character, which
is achar(10) on almost every system.

MOVE_ALLOC changes the address of an allocatable object.

C interoperability intrinsics

C_LOC(fort_arg) - returns a type(c_ptr) pointer to argument

C_ASSOCIATED(cp1 [, cp2]) - similar to associated, but for
 arguments of type(c_ptr)

C_F_POINTER - forms a Fortran pointer from a type(c_ptr)

C_FUNLOC(fort_proc) - returns a type(c_funptr) pointer to the
 Fortran procedure argument

C_F_PROCPOINTER - forms a Fortran procedure pointer
 from a C function pointer.

New environment intrinsics

COMMAND_ARGUMENT_COUNT,
GET_COMMAND, and GET_COMMAND_ARGUMENT
to get information about the command line.

GET_ENVIRONMENT_VARIABLE to get value of an
environment variable.

IS_IOSTAT_END and IS_IOSTAT_EOR to determine
if an iostat value is an end of file or end of record indicator.

Basic Operations

Basic Operations

Derived type constructors

Derived type constructors are extended to allow keywords an
allocatable and procedure components.

type foo
 integer :: ii
 real,allocatable :: bar(:)
end type foo

type(foo) :: fobj

fobj = foo(ii = 1, bar = null())

Enhanced array constructors

 Allow type spec in an array constructor:

integer,parameter :: rk = selected_real_kind(12,100)
real(rk),dimension(4) :: spin
character(7) :: names(3)

spin = (/ real(rk) :: 0., 1., 0., 1. /)

names = [character(len=7) :: “Brian”, “Jeff”, “Melanie”]

Assignment to allocatable variables

Allocatable components requires new rules for assignment. These
are extended to ordinary allocatable objects as well.

type foo
 integer,allocatable,dimension(:) :: bar
end type foo

type(foo) :: f1,f2

allocate(f1%bar(100))
f1%bar(:) = 1

f2 = f1 ! f2%bar gets automatically allocated here

Assignment of allocatable variables

Same rules for allocatable intrinsic type variables.

 real,allocatable,dimension(:) :: a,b,c

allocate(a(10),b(20))
a = 1.2
b = 1.3
c = a ! c allocated with size of 10
c = b ! c reallocated with size of 20
c(:) = a(:) ! illegal - array section sizes do not match

Assignment for characters

New assignment rules similar to allocatable arrays apply
to allocatable character scalars as well.

character(len=:),allocatable :: string

allocate(character(16) :: string)
string = “0123456789abcdef”

string(:) = “pad” ! padded with 13 blanks on right
string = “short” ! reallocated with len = 5

This new feature effectively provides a varying length string
facility in Fortran.

Associate construct

The ASSOCIATE construct provides a shorthand for expressions
and derived type objects that appear in statements.

do i = 1, genome(ng)%chr(nc)%dblen
 genome(ng)%chr(nc)%db(i) = iand(genome(ng)%chr(nc)%db(i),255)
end do

associate (x => genome(ng)%chr(nc))
 do i = 1,x%dblen
 x%db(i) = iand(x%db(i), 255)
 end do
end associate

Lower bounds in pointer assignment

Lower bounds in pointer assignments can be specified.

real,pointer :: p(:)
real,target :: t(100)

p => t(2:5) ! p(1) has target of t(2) - f95 rules

p(2:) => t(2:5) ! p(2) has target of t(2) - new feature

Pointer rank remapping

Pointers of higher rank can have rank 1 targets through rank
remapping. The rank 1 target may be more useful in some
circumstances (as an argument to an old f77 function, for example)
while the higher rank version may be more clear in computation
expressions.

real,pointer :: p(:,:)
real,target :: t(100)

p(1:10, 1:10) => t

Array reallocation

A new intrinsic is provided to simplify reallocation of an array.

integer,allocatable,dimension(:) :: x,tmp

allocate(x(20))
! … ! (Old method)
allocate(tmp(40)) ! allocate(tmp(20))
tmp(1:20) = x ! tmp = x
call MOVE_ALLOC (tmp, x) ! deallocate(x)
 ! allocate(x(40))
 ! x(1:20) = tmp
 ! deallocate(tmp)

IEEE features

The IEEE_FEATURES module MAY define these constants of type
IEEE_FEATURES_TYPE:

ieee_datatype
ieee_nan
ieee_inf
ieee_denormal
ieee_rounding
ieee_sqrt
ieee_halting
ieee_inexact_flag
ieee_invalid_flag
ieee_underflow_flag

Undefined constants correspond to unsupportable features.

IEEE arithmetic control

The IEEE_ARITHMETIC intrinsic module defines these constants
of type IEEE_CLASS_TYPE:

ieee_signaling_nan ieee_quiet_nan
ieee_negative_inf ieee_positive_inf
ieee_negative_normal ieee_positive_normal
ieee_negative_denormal ieee_positive_denormal
ieee_negative_zero ieee_positive_zero
ieee_other_value

and these constants of type IEEE_ROUND_TYPE:

ieee_nearest ieee_to_zero
ieee_up ieee_down
ieee_other

IEEE arithmetic functions

The IEEE_ARITHMETIC module defines 28 functions to
inquire about ieee floating point support and state.

Examples:

ieee_support_standard
ieee_support_inf

ieee_copy_sign
ieee_is_nan

ieee_get_rounding_mode
ieee_set_rounding_mode

IEEE exception control

IEEE_EXCEPTIONS intrinsic module defines:

types: values:
 ieee_flag_type ieee_overflow
 ieee_status_type ieee_divide_by_zero
 ieee_invalid
 ieee_underflow
 ieee_inexact

routines:
 ieee_support_flag
 ieee_support_halting
 ieee_get_flag ieee_set_flag
 ieee_get_halting_mode ieee_set_halting_mode
 ieee_get_status ieee_set_status

I/O

I/O

Asynchronous I/O

Asynchronous I/O is supported with syntax to replace the old
buffer in and buffer out statements. The “YES”/”NO” values
need to be initialization expressions so they are known at
compile time.

OPEN (UNIT=10, …. ASYNCHRONOUS = “YES” …)

READ (10, … ASYNCHRONOUS=“YES”, ID = idw, …)

WAIT (10, ID=idw)

Without an ID, the wait applies to all operations on the unit.
CLOSE and INQUIRE have an implied wait.

Stream I/O

Steam access is a new alternative to Sequential and Direct access.

Both formatted and unformatted files can have stream access.

Formatted files have no record structure although embedded
new_line characters may be used by the program.

Unformatted files to not have record length information embedded.

OPEN (… ACCESS = “STREAM” …)

A location within the file may be specified by the POS=
specifier in the READ or WRITE statement.

FLUSH statement

The FLUSH statement provides a standard conforming syntax
for the flush library routine. There are two forms:

FLUSH 10

FLUSH (UNIT = 10, IOSTAT = n)

Other allowed specifiers: IOMSG and ERR.

Some files do not support flush operations. In that case, the IOSTAT
variable is set to a negative value.

On Cray systems, stdout automatically flushes.

Comma mode

The OPEN statement has a DECIMAL specifier for
formatted I/O. If the value 4.3 is to be written to the file

DECIMAL = “POINT” -> 4.3 is output
DECIMAL = “COMMA” -> 4,3 is output

The default is “POINT”. This is an internationalization feature.

Note that using DECIMAL=“COMMA” disables the comma as
a value separator in list-directed I/O. In that case, a semi-colon
is used instead of comma as the value separator.

Rounding Modes

The OPEN statement supports a ROUND specifier to control
numeric rounding of real values for formatted I/O. Allowed
values are:

ROUND = “UP”
 “DOWN”
 “ZERO”
 “NEAREST”
 “COMPATIBLE”
 “PROCESSOR_DEFINED”

The default value is processor dependent. On an IEEE machine,
NEAREST is the IEEE meaning.

Text Encoding

The OPEN statement supports an ENCODING specifier that
controls how the text in a formatted file is interpreted. The
allowed values are:

ENCODING = “UTF-8”
 “DEFAULT”

The default is DEFAULT, which is ASCII on most systems.
The UTF-8 option is for Unicode text - the ISO_10646 set
of characters.

I/O qualifiers in I/O statements

Many of the specifiers from OPEN statements for formatted
files can be included in READ and WRITE statements. These
override the values from the OPEN statement. The changeable
modes are:

 BLANK
 DECIMAL
 DELIM
 PAD
 ROUND
 SIGN

read (unit=10,fmt=*,round=“up”) x

I/O error messages

I/O statements are allowed to have the IOMSG specifier that
is set to a printable error message if the statement resulted
in a error, end-of-file, or end-of-record condition. The message
is stored in the specified scalar default character variable.

character(132) :: msg

read (10, iomsg = msg ,iostat=n) x

The intention is that these messages should be similar to the
error messages printed

Normally this is used in conjunction with IOSTAT.

User defined type I/O control

Users can write subroutines to specify how derived type I/O is
done. Up to 4 routines can be supplied for a type with these
generic specifiers:

read(formatted)
write(formatted)
read(unformatted)
write(unformatted)

These are typically generic type bound procedures.

Formatted transfers use the DT edit descriptor.

DTIO example

Recall the previous example, now enhanced with a dtio specification

type :: dna
 integer,allocatable :: ascii_text(:)
 integer :: length
contains
 generic :: write(formatted) => fw_dna
end type dna
type (dna) :: hs_chr20

In printing the dna string, you want to only print the text, not the
length, so default derived type I/O would not work. You could
write the individual components, but that is not in the OOP spirit.

write (10, “(dt)”) hs_chr20

DTIO function example

For the previous example, the user needs to supply the I/O routine
with a specific interface - this will be called by the library I/O
routines as part of the write statement.

subroutine fw_dna(dtv, unit, iotype, vlist, iostat, iomsg)
 class(dna), intent(in) :: dtv ! hs_chr20
 integer,intent(in) :: unit ! 10
 character(*),intent(in) :: iotype ! “DT”
 integer,intent(in) :: vlist ! not used in this example
 integer,intent(out) :: iostat
 character(*),intent(inout) :: iomsg

 ! write out the first dtv%length characters in dtv%ascii_text
 ! set iostat based on results of the write
 end subroutine fw_dna

Future plans and options

Future

Beyond Fortran 2000

Some broad ideas for future versions of Fortran:

Submodules
 Separate procedure interfaces and definitions
 Avoid compilation cascades

CAF
 Parallel constructs are important in today’s environment
 Looking for a high performance solution

Typeless
 Better handling of BOZ constants and non-numeric data
 Simplified interfaces for some subprograms
 Standardize some common extensions

Standards structure

How Fortran gets made:

ISO -> WG5 -> J3

WG5 collects proposals and specifies the requirements for Fortran

J3 is delegated to actually write the document defining Fortran

Next WG5 meeting at the end of July.

Next J3 meeting in August, to produce the ballot draft standard.

Second ballot and final approval in 2004.

Request for comments

We welcome comments on

• The current draft standard (j3-fortran.org)

• Priorities for implementing the new F2000 features

Send comments to

 longb@cray.com

EXTREME PERFORMANCE!

END • FIN • FINALE • FINE

