
The Portable Cray
Bioinformatics Library

James Long

CUG, Columbus OH

5/15/2003

The Portable Cray
Bioinformatics Library (CBL)

• Introduction

• Portability Issues

• Testing Methodology

• Performance

• Concluding Remarks

Introduction

• High Performance Bio Library
• Identify the primitives of computational biology

• Operate on compressed data

• Originally written for Cray SV1
• Cray version in Fortran/assembly, C callable

• Uses Cray proprietary hardware

• Portable version written in C
• Compiles on most unix platforms

• Use bit-level operations whenever possible,
i.e., shift, xor, mask, etc., on compressed data

Introduction

• Major Version 1.0 primitives
• cb_amino_translate_ascii - translate nucleotides to amino

acids, all 3 reading frames

• cb_compress/uncompress - 2, 4, or 5 bit

• cb_copy_bits - copy contiguous sequence of bits, not
necessarily word or byte aligned

• cb_irand - generate an array of random words

• cb_read_fasta - load data from FASTA file

• cb_repeatn - find short tandem repeats

• cb_revcompl - reverse complement compressed
nucleotide data

• cb_searchn - gap-free nucleotide search w/mismatches

Portability Issues

• 32/64 bit words
• Simple, slightly different code for longer

length shifts, masks, etc.

• Big Endian, Little Endian

• Harder, conceptually involves reading
and writing left-to-right vs. right-to-left

Big Endian, Little Endian

• Classic one-word-of-memory definition

Big-endian: Most significant byte in lowest address

|<--------------word0-------------->|
 byte0 byte1 byte2 byte3
 00100001 00001111 11110000 11111111

Little-endian: Least significant byte in lowest address

|<--------------word0-------------->|
 byte3 byte2 byte1 byte0
 00100001 00001111 11110000 11111111

Big Endian, Little Endian

• The string “aaaaccccggggttttaaaa””””:

Big-endian:

|<--------word0-------->|<--------word1-------->|<--etc-->|
 byte0 byte1 byte2 byte3 byte4 byte5 byte6 byte7

 a c g t a null

Little-endian:

|<--etc-->|<--------word1-------->|<--------word0-------->|
 byte7 byte6 byte5 byte4 byte3 byte2 byte1 byte0

 null a t g c a

Big Endian, Little Endian

• The string “aaaaccccggggttttaaaa”””” ccccoooommmmpppprrrreeeesssssssseeeedddd:

Big-endian
|<--------------word0-------------->|<--------------word1-------------->|
|byte0---|byte1---|byte2---|byte3---|byte4---|byte5---|byte6---|byte7---|
 01100001 01100011 01100111 01110100 01100001 00000000 <------8-bit ascii

 a c g t a null
 00011110 00000000 00000000 00000000 <------ compressed 2-bit string
 a c g t a null padded zeros

Little-endian
|<--------------word1-------------->|<--------------word0-------------->|
|byte7---|byte6---|byte5---|byte4---|byte3---|byte2---|byte1---|byte0---|
8-bit ascii -----> 00000000 01100001 01110100 01100111 01100011 01100001

 null a t g c a
compressed 2-bit string ----------> 00000000 00000000 00000000 10110100
 padded zeros null a t g c a

Testing Methodology

• XP - Extreme Programming
• write the test first

• Simple skeleton to plug in final routine so that a
comparison can be made with an unoptimized,
easier-to-code routine producing the same output

• Be sure to compare final vs. unoptimized results
across word boundaries and at edges

• Writing the slower routine first helps clarify issues
for the production version

Performance

• Simple benchmarking
• Combined with test code, 2 loops wrapped

around routine

• Outer loop starts with db length = 256,
doubling each time to 33,554,432 (32 MB),
extra runs to 512 MB to drive IBM P4 out of L3

• Inner loop called REP times with varying
parameters

• Inner loop times are summed for final total

 cb_amino_translate_ascii

 translates nucleotides to amino acids

Employs a 64 element static unsigned long array as a lookup table to translate groups
of 3 nucleotides (compressed in 2-bit mode) into amino acids (in 8-bit ASCII).

 cb_compress/uncompress

 compresses/uncompresses nucleotides or amino acids from/to ASCII

Consists largely of mask and shift operations, performing well on all platforms.

 cb_copy_bits

 copies a contiguous sequence of memory bits

 that is not necessarily word or byte aligned

Performs only a few register operations before moving data back to memory, essentially
making this routine a memory bandwidth measure for a platform.

 cb_countn_ascii

 counts A, C, T, G, and N characters in a string

Performs well, SV1ex could be better.

 cb_repeatn

 finds short tandem repeats in a nucleotide string

Algorithm needs additional work for vector platforms, but has excellent performance
on low-end hardware.

 cb_revcompl

 reverse complements compressed nucleotide data

Starts at the end of the database, shifting bits into a new word before a bit reversal within
the word followed by a bitwise complement. Needs tuning on low-end hardware.

 cb_searchn

 gap-free nucleotide search allowing mismatches

Screens candidates by counting mismatches for only a fraction of each candidate database
string, hoping to reject many without having to count all mismatches. Surviving candidates
are saved until there are VECTLEN to process. Needs bigger cache on low-end hardware.

 IBM P4

 32, 64, 128, 256, and 512 MB Databases

IBM P4 processors share a 32 MB L3 cache, large enough to contain the all the databases in
the benchmark suite. Compare actual runtimes with ideal runtime computed as doubling the
32 MB time for each routine.

Performance

Integer Benchmarks (seconds) 500 800 MHz X1 1.3 GHz 1.4 GHz
 MHz SSP MSP MSP IBM icc gcc pgcc
CBL Function CRAY ARSC-SV SX6 128 128 512 power4 AMD AMD AMD
============ ==== ======= === === === === ====== === === ===
cb_amino_translate_ascii: 39 108 77 158 94 88 44 63 87 91

cb_compress/uncompress: 31 54 55 58 46 42 48 64 70 78

cb_copy_bits: 15 26 1 5 1 3 12 45 45 50

cb_countn_ascii: 18 84 11 24 7 4 29 59 62 63

cb_repeatn: 41 143 83 138 139 124 33 48 49 52

cb_revcompl: 19 81 15 34 25 19 46 148 138 156

cb_searchn: 20 84 28 58 49 41 64 129 167 166

IBM P4: 23,49,99,198,396 26,54,110,222,442 8,18,43,90,178 14,29,61,123,246
17,35,69,138,277 24,50,105,220,448 32,65,131,262,524

Concluding Remarks

• Basic things are done very fast

• Library will continue to grow as
more primitives are identified

• Portable version is foundation for
platform-optimized versions

• Portable version promotes
adoption of CBL as a standard
• Open source is preferred

