
CUG 2003 Proceedings 1

The Cray BioLib: A High Performance Library for
Bioinformatics Applications

James D. Maltby, Cray Inc

ABSTRACT: The new Cray Bioinformatics Library (BioLib) is designed to perform genomic
searching, sorting and bit manipulation operations useful in the the analysis of nucleotide
and amino acid sequence data. The library makes use of unique Cray vector hardware
features and compressed data formats to speed throughput and minimize storage. Though
other biological software libraries have been written, this is the first to be specifically
designed for high performance computing. Features of the library and a list of calls are
included

.

1. Introduction

The Cray Bioinformatics Library (BioLib) routines perform
searching, sorting and low level bit manipulation operations
useful in the analysis of nucleotide and amino acid sequence
data. These routines are intended to simplify and enable the
use of the high-performance features of the Cray vector
processors, and was developed on the SV1/ex. The library
makes use of unique Cray vector hardware features and
compressed data formats to speed throughput and minimize
storage. Routines are also available to simplify use of the
Solid State Disk (SSD) for the manipulation of extremely
large data sets. The routines are designed to be referenced
from either Fortran or C, and are currently available on the
Cray SV1 series UNICOS systems. A version for the Cray
X1 should be available in the second half of 2003.

The BioLib originated in a research project Bill Long was
working on with the National Cancer Institute in 2001.
They were searching for a particular genetic pattern called a
Short Tandem Repeat. Dr. Long was able to formulate the
problem in such a way as to take maximum advantage of the
bit manipulation functional units built into Cray vector
CPUs. By compressing the data into a two-bit-per-
nucleotide format and working on large blocks of data at
once, very high throughput rates could be achieved, as
shown in Figure 1. The routines developed for this project
formed the basis of the BioLib, and new features are
continually being added.

69

9000

0

2000

4000

6000

8000

10000

Millions of Characters/Second
 (1 processor)

Alpha Cray SV1

Over the past year, there has been an ongoing collaboration
between the Arctic Regions Supercomputer Center (ARSC)
in Fairbanks, Alaska and the Institute for Systems Biology
(ISB) in Seattle, Washington to define new modules for the
BioLib and exercise it on problems of interest. Though
bioinformatics is a very diverse field, it was decided to
concentrate the library’s functions on genomic searching
and manipulation, as well as the support routines necessary
for working with very large data sets.

Jim Long of ARSC has developed an open-source version of
the BioLib written in C that can be built on virtually any
platform. Jim Long has a presentation on the development
of the open-source version and performance data at CUG
2003. Though the open source BioLib will not be able to

Figure 1. The graph shows the performance advantage
of the SV1 over a 667 MHz Alpha processor, searching
for a 32 nucleotide sequence in a 34 Mbp database.
(Graph courtesy National Cancer Institute)

CUG 2003 Proceedings 2

take advantage of the Cray vector hardware, of course, it
will be of great utility for biological software development.
Applications requiring higher performance or more memory
can simply be re-compiled and re-linked on the SV1/ex, and
soon on the Cray X1.

2. Other Libraries

There exist several other libraries of functions specifically
developed for the biological sciences, but none have the
high-performance orientation of the BioLib. The European
Molecular Biology Open Software Suite, or EMBOSS, was
started in 1997. EMBOSS consists of a large suite of
standalone programs in C, designed to solve sequence
analysis problems. These programs are designed to be used
standalone or as part of custom scripts to solve multi-step
problems. They are open-source programs designed to be as
portable as possible, and not optimized for any particular
architecture.

Another popular package is BioPerl (1995), a collection of
Perl scripts for genomic analysis and manipulation. These
functions may be combined to form larger scripts for
automating common biological computing tasks. Though
both these libraries are widely used, they are not oriented
towards building high-performance software packages for
large data sets. Perl, for example, is usually an interpreted
language.

3. Cray Bit Manipulation Features

Since the Cray-1, Cray vector processors have had unique
functional units that allow complex bit and logical
manipulations at full vector speeds. Typical uses include
pattern searching, code manipulations, and now genomic
search and comparison. On the SV1/ex, these units include:

Bit Matrix Multiply (BMM)
 This is a dynamically programmable bit unit that functions
by creating a 64 by 64 array of bits, and performing a
matrix-vector multiply on a 64 bit word or entire vector
register. This functionality may be used to transpose and
manipulate bit subfields within a word, and is crucial to the
speed of the compression, decompression and ungapped
search routines.

Pop Count / Parity
This function counts the number of one bits in a word, and
is used to count the number of “hits” or matches for the
search algorithms.

“Snake Shift” (vector register shift)
Using this instruction, an entire vector register can be
shifted as a single 4096-bit word. This is very useful for the
shift-and-compare algorithm used in the ungapped search
routines.

Logical Functions
These include AND, OR, XOR, XNOR, ANDNOT, and
MASK. Though not all unique to Cray processors, these
functions may be used in combination with the others above
in a single vector chime to improve performance.

4. Description of routines

 A short description of the available routines follows below,
corresponding to the features available in the SV1/ex libcbl
version 1.2. More information may be found on the man
page intro_libcbl.

Search and Sort routines:

These routines form the core of the library, since sequence
search and comparison are some of the most common tasks
in genomics.

cb_searchn performs gap-free searches for short
sequences of nucleotides, with a specified number of
mismatch errors allowed. This is the function shown in
Figure 1 above, and is capable of extremely high
performance.

cb_repeatn finds exact STRs (short tandem repeats), for
repeat lengths from 2 to 16.

cb_sort is a multi-pass sort routine designed to sort large
blocks of packed data and return ordered location
information for the input data. This can be very useful
for decreasing the order of sequence-sequence
comparisons.

cb_isort is a parallel sort routine for integer data, using
OpenMP parallelization. This allows larger arrays to be
sorted with higher performance.

(in the description of the Smith-Waterman routines
below, “X” should be substituted with “a” for amino
acid searches, “2” for 2-bit nucleotide encoding and “4”
for 4-bit nucleotide encoding)

cb_swX_fw calculates the Smith-Waterman score and
alignment with full-word accuracy for two input arrays
of genomic data. The Smith-Waterman algorithm
computes gapped alignments using a dynamic
programming algorithm, and has been shown to always
yield the optimal alignment. This routine is made up of
three routines that may also be called separately, as
described below. This offers more flexibility for the
programmer, for example to avoid calculating the full
alignment until a maximal score has been found.

cb_swX_fw_init initializes the Smith-Waterman
scoring matrix and allocates memory.

cb_swX_fw_align calculates the optimal
alignment corresponding to the maximum score
calculated in cb_sw_fw_score.

cb_sw_fw_score fills the scoring matrix and
returns the maximum score.

CUG 2003 Proceedings 3

Sequence Manipulation routines:

These routines perform common manipulations and scorings
of strings of genomic data.

cb_amino_translate_ascii converts nucleotide
sequences in ascii format to amino acid sequences, in all
three reading frames.

cb_countn_ascii counts the number of A, C, T, G, N
characters in an ascii input file.

cb_cghistn creates a histogram of C and G density in a
compressed (2-bit) input string, with a user-defined
window size. The density of CG characters is an
important marker for coding regions.

cb_revcompl generates the reverse complement of a
nucleotide string, operating on compressed data.

File Handling routines:

These utilities are very useful for reading the industry-
standard FASTA format and converting to the compressed
data formats necessary for high performance in the other
routines.

cb_read_fasta reads in a multi-record input file in
FASTA format.

cb_fasta_convert extracts and organizes data contained
in a memory image of a FASTA format data file.

cb_compress compresses nucleotide or amino acid data
into various compressed formats.

cb_uncompress converts data in compressed formats
back to ascii.

SSD (Solid State Disk) Data Transfer routines:

The SSD can be used to store the extremely large data files
required for many genomics problems, and retrieve them at
very high speeds. These are high-level interfaces to lower
level I/O calls.

cb_ssd_init initializes SSD storage for the other
routines.

cb_copy_to_ssd copies a block of data from memory to
SSD.

cb_copy_from_ssd copies a block of data from SSD
back into memory.

cb_largest_ssdid finds the highest numbered SSD
storage area.

cb_ssd_free frees up an SSD storage area.

cb_ssd_errno performs error handling for SSD routines.

Miscellaneous Support routines:

These routines perform memory management and other
small tasks that have come up during code development.

cb_malloc allocates memory blocks aligned for highest
performance with the other routines (C only; in Fortran
use the ALLOCATE statement).

cb_block_zero sets the contents of a block of memory to
zero very efficiently.

cb_free frees the memory blocks allocated by cb_malloc
(C only; in Fortran use the DEALLOCATE statement).

cb_copy_bits copies a block of bits from one memory
location to another; useful for manipulating compressed
data.

cb_irand generates a list of 64-bit words with random
bit patterns. It can be used to generate random
nucleotide sequences.

cb_nmer uses an input string of compressed data to
create an array of n-mers, stored one n-mer per machine
word.

cb_version provides library version information.

Conclusions

The BioLib provides a new way to accelerate biological
code development, providing easy access to the power of
the special functional units available on Cray vector
processors. This high-performance library differs from
other libraries in that it is designed to be used in high-
performance C and FORTRAN codes. The soon-to-be
released open-source version should ensure wide acceptance
of the library and provide a seamless code development and
upgrade path.

Acknowledgments

The author would like to thank Bill Long, primary
author of the CBL and Jim Long (no relation), author of the
open source version. He would also like to thank his
colleagues at Arctic Regions Supercomputer Center (ARSC)
in Fairbanks and the Institute for Systems Biology (ISB) in
Seattle.

About the Author

Jim Maltby is Bioinformatics Practice Leader for North
America for Cray Inc. Jim can be reached at Cray Inc.
Corporate Headquarters, 411 First Avenue S., Seattle WA
98104. Email: jmaltby@cray.com

