
Optimisation of ScaLAPACK on the X1 1

 Optimisation of ScaLAPACK on the Cray X1

Adrian P. Tate, CSAR, University of Manchester
adrian.tate@man.ac.uk

ABSTRACT: Scalability of numerical parallel library routines is naturally inhibited by
communications overhead, since the sharing of computation amongst processors
becomes outweighed by the cost of communications between those processors.
Hence, a fixed problem size will naturally reach saturation point in terms of scalability.
In the context of ScaLAPACK, this saturation point is often too low for use in
capability codes. The University of Manchester and Cray Inc. have begun a
collaboration that will endeavour to address this issue by way of a complete overhaul
of the existing communications layer to ScaLAPACK, thus decreasing the time spent
in inter-process communications and increasing the scalability of the library routines.
Cray's new X1 architecture is designed to make remote memory referencing much
quicker, and specific features allow very quick message passing via shmem or Co-
array Fortran. With these features in mind, a suite of new communication subroutines
is being developed to produce highly scalable parallel numerical library routines for
the Cray X1.

1. Introduction

Cray Inc. will include scalapack in a future release of
the X1 scientific library. The university of Manchester
will be responsible for the communications
optimisation of specific routines within that
distribution. The University of Manchester has been
actively involved in the optimisation of parallel
numerical library routines in the context of the UK
academic community; see Tate & Briddon [1].
Several academic users of the national CSAR service
have reported scalapack dependence as an inhibiting
factor to the production of capability codes, since any
speed-up obtained in the application is not always
mirrored in the scalapack subroutine, which then
becomes a bottleneck. Most Scalapack subroutines
perform the majority of the involved computation in a
highly tuned blas routine; the lack of scaling is a
failure of the Pblas to ensure communication costs are
low. Actual communications are carried out using
BLACS (Basic linear Algebra Communications
Subprograms) which use MPI for message passing.
Since the blas are very well tuned on supercomputer
systems, and since all the numerically intensive
aspects of a given scalapack routine seem to be
sensitive to compiler optimisation, these aspects were
ignored in the work, which concentrated on reducing

communications overhead directly. This was
performed in a number of ways

• Replace 2 sided blacs calls with shmem
• Reduce synchronization costs
• Re-order operations and mathematics to allow

more efficient communications patterns.

Particular attention was paid to redistribution routines,
since these constitute a performance bottleneck due to
the block-cyclic distribution. If a matrix A is
distributed over a 2-d Blacs grid, then for a
numerically intensive area of the code this distribution
may be extremely helpful since the array elements
separated by a known stride may all be held in the
local processors memory (with a sensible choice in
blocking factor). In the instances when the contiguous
array elements are required however, such as the
copying of a subarray of A into a subarray of another
2-d block cyclic array, then consecutive elements are
(by implication) spread amongst all other processors
and the operation will involve a maximum of inter-
process communication. Routine PDGEMR2D,
heavily used in QUB’s R-matrix Propagator code [2]
was replaced with a 1-sided communications version
that used shmem and co-array Fortran for data transfer
and which minimised communications and
synchronization overheads. The resultant routine

Optimisation of ScaLAPACK on the X1 2

operates at 10-60% overhead of the Scalapack
original, results for which will be published shortly.
This work exposed the need for a more tuned
scalapack library on high-performance systems and
offered the opportunity to look more closely at
scalapack generally. Though the library is extremely
comprehensive, user take-up has been lower than the
community expected. Unquestionably, a factor in this
is the strict adherence to 2-d block cyclic distribution
that a user code must exhibit. The distribution must be
in place before a call to any scalapack routine, and
usually means that an application is subjected to the
same distribution at all other points in the code (i.e.
not just when calling scalapack). This discourages new
users from experimenting with scalapack, most of its
users have a problem that is permanently configured in
a scalapack friendly manner. An alternative package,
PLAPACK [3] offers a less rigid distribution that can
suit the nature of the application as well as some
noteable performance increases, but the project is still
junior and does not yet offer the level of functionality
to allow most users to switch from scalapack. Hence,
there is a very real need for Cray to offer a tuned
scalapack, and some scope for future improvement and
enhancements in areas that will improve the useability
and accessibility of the library.

2. Optimisation of Scalapack

Co-array Fortran is an excellent programming
paradigm for use on the X1, since the system has been
implemented such that remote data will not be cached
by a local processor, but will directly enter the vector
registers. Further, the X1 compiler will perform pre-
fetching on Co-arrays within the program. The reasons
that lead to Co-array being used in scalapack
optimisation were quite separate; programming
difficulties inherent in a block cyclically distributed
mode are made simpler using co-array fortran.
Consider for example, the copying of one block of a
block-cyclically distributed matrix A. Since a block is
never contiguous in memory (unless the block length
equals the matrix dimension) this involves a series of
calls to MPI routines to transfer each column at a time
to the remote processor (use of an MPI derived type
can help), but in co-array fortran this operation is
straightforward:

A(li:li+MB,lj:lj+NB) = A(ri:ri+MB,ri:gi+NB) [dest]

Where li,lj = local i, local j
Ri,rj = remote I, remote j

MB, NB = block sizes
dest = remote process number

The extremely simple syntax allows the user of a 2-d
block cyclic context to vastly decrease the complexity
of remote references, and it is for this reason, coupled
with the obvious performance advantages, that co-
array Fortran will be a valuable tool in the
development of a tuned scalapack.

Co-array Fortran will be used in conjunction
with shmem, since there is some difference in each’s
performance for certain data transfer sizes (see results
section). Previous work has included both co-array and
shmem version of redistribution routines, Cray tuned
scalapack will include a switch that selects the most
appropriate transfer method depending on block size.

In the short term, all communication
procedures will be replaced to use co-array fortran and
shmem as a data transfer method only, i.e. arrays
within the scalapck and pblas subprograms will not be
co-arrays but the internal arrays will be. This can lead
to some difficulty; if an actual argument is a standard
array then the associated dummy argument within a
procedure cannot be either a co-array or a
symmetrically allocated array. To avoid expensive
copying into a co-array or symmetrically allocated
array, two work-around techniques are useful. For co-
arrays, a derived type can be allocated internally
which has only one member, being a co-array pointer.
This pointer can then be assigned to the passed array.

subroutine co_pass(A)
type cop
 real,pointer,dimension(:,:) :: co
end type cop
 type (cop) :: rbuf[*]
REAL,target :: A(ni,mi)

 RBUF%co => A(1:mi,1:ni)

The need to use symmetrically allocated data in
shmem programs can be avoided altogether by using a
remote memory address and allocating local pointer to
the remote memory address of the array in question.

Subroutine nonsymtrans(A,m,n,iam,dest)
Real :: A(m,n), ACOPY(m,n)
Pointer(cptr,ACOPY)
Integer*8 :: flag
Integer :: iam,dest
DATA flag /0_8/
SAVE flag
If(iam==0)then

Optimisation of ScaLAPACK on the X1 3

 Call shmem_wait(flag,0)
cptr = flag
flag = 0
call shmem_fence()
call shmem_get(A,ACOPY,m*n,dest)

else
call shmem_put8(flag,loc(A),1,dest)

endif
end subroutine

This method removes the need for expensive
copying, but is also more efficient anyway since
symmetric allocation necessarily involves a global
barrier which can be expensive.

All BLACS communication procedures will
be replaced with more efficient replacements. Since
scalapack routines all depend on a core group of
communication procedures, this work will have a
significant effect on the library as a whole. In the
medium term, attention will move from the BLACS
library to the Pblas and scalapack libraries.
Communications patterns for one-sided calls do not
necessarily match those written for 2-sided MPI
blacs, so some restructuring at the PBLAS level will
be necessary. Restructuring can often allow different
operations to be performed with less synchronisation,
and hence performance can be increased (see [1]). In
the longer term, (subject to continuation of the
collaboration) the user interface, blocking strategy and
distribution dependence will be tackled.

3. Progress

This collaboration has barely begun, but there has
been some initial work that is very promising. Routine
PCGETRF, a complex LU factorisation routine was
revealed to spend an increasingly worrying proportion
of time in blacs communications calls CGESD2D /
CGERV2D and CGEBSD2D / CGEBRV2D on higher
numbers of processors. Preliminary replacements to
CGESD2D and CGERV2D show a significant
performance improvement in both co-array and
shmem replacements. Figure 1 shows the relative
performance of these routines and the MPI-Blacs
original. Without access to a production X1 system,
and since this project is in such a junior stage, results
must be restricted to a synthetic test problem. Blacs
replacements for both shmem and Co-array look very
promising, and replacements for collective routines
PCGEBRVD / PCGEBD2D are expected to give a
similar performance gain.

The optimisation of the library as a whole is a
huge undertaking, and to aid the process, defined
functionality is being captured in subroutines to avoid
duplication in further work. Thus, operations such as
the calculation of a remote process number, or the
global location of a remote array element are
performed externally in what will become an internal
library of library tools.

A suite of high resolution timing routines have
been created for this work, along with an interface that
allows very simple result analysis, and a GUI that
enables graphical representation of results at the click
of a mouse. The features will help UoM staff spend
more time in the optimisation process than in
documentation process.
 Around 20% of the work involved in creating
new library routines is in developing these routines
themselves. The remaining work is with creating a
suite of testing and safety routines that can make sure
the routine’s parameters are correct, check array
bounds etc, and in testing the new library for
robustness. Work in this area is likely to constitute a
high percentage of the project time in the short and
longer term.

0

5

10

15

20

25

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

Message size x 32bit

T
im

e
(s

ec
on

d
s)

Co-array MPI-blacs shmem

Figure 1 Preliminary BLACS replacement performance
on a 2x2 processor grid

Optimisation of ScaLAPACK on the X1 4

Acknowledgements

Mary Beth Hribar, Chao Yang, John Levesque – Cray
USA
Steve Jordan, David Tanqueray, Matt Thomason –
Cray UK

References

[1] High Performance Linear Algebra, A.Tate & P.
Briddon, CUG 2002 Proceedings

[2] 2D R-Matrix Propagations, T. Stitt, S.Scott, P.
Scott, P. Burke, Spinger Lecture Notes in Computer
Science, 2565, pp354-367

[3] See Using Plapack, Robert Van der Geijn, MIT
Press, 1997

