COMPUTER & COMPUTATIONAL SCIENCES

Performance Modeling the Earth Simulator and ASCI Q

Darren J. Kerbyson

Adolfy Hoisie, Harvey J. Wasserman

Performance and Architectures Laboratory (PAL) Los Alamos National Laboratory April 2003

"26.58Tflops on AFES ... 64.9% of peak (640nodes)"

"14.9Tflops on Impact-3D 45% of peak (512nodes)"

"10.5Tflops on PFES ... 44% of peak (376nodes)"

PAL Talk Overview

• Overview of the Earth Simulator

- A (quick) view of the architecture of the Earth Simulator (and Q)
- A look at its performance characteristics

• Application Centric Performance Models

- Method of comparing performance is to use trusted models of applications that we are interested in, e.g. SAGE and Sweep3D.
- Analytical / Parameterized in system & application characteristics

• Models can be used to provide:

- Predicted performance prior to availability (hardware or software)
- Insight into performance
- Performance Comparison (which is better?)
- System Performance Comparison (Earth Simulator vs ASCI Q)

PAL Earth Simulator: Overview

CCS-3

os Alamos.

- 640 Nodes (Vector Processors)
- interconnected by a single stage cross-bar
 - Copper interconnect (~3,000Km wire)
- NEC markets a product SX-6
 - Not the same as an Earth Simulator Node similar but different memory sub-system

PAL Earth Simulator Node

Each AP has:

- A vector unit (8 sets of 6 different vector pipelines), and a super-scalar unit
- 5,000 pins
- AP operates mostly at 500MHz:
- Processor Peak Performance = 500 x 8 (pipes) x 2 (float-point) = 8,000 Mflop/s
- Memory bandwidth = 32 GB/s per Processor (256GB/s per node)

- 2048 Nodes
- Fat-tree network (Quadrics)
- Each node is an HP ES45
 - 4 x Alpha EV68 micro-processors
 - 1.25GHz
 - Memory Hierarchy:
 - » 64KB I+D L1
 - » 16MB L2 cache
 - » 16 GB memory per node (typical)

	Earth Simulator (similar to NEC SX-6)	ASCI Q (HP ES45)	
Node Architecture	Vector SMP	Microprocessor SMP	
System Topology	Crossbar (single- stage)	Fat-tree	
Number of nodes	640	2048	
Processors - per node - system total	8 5120	4 8192	
Processor Speed	500 MHz	1.25 GHz	
Peak speed - per processor - per node	8 Gflops 64 Gflops	2.5 Gflops 10 Gflops	
Memory - per node - per processor	16 GB 2 GB	16 GB (max 32 GB) 4 GB (max 8 GB)	
Memory Bandwidth (peak) - L1 Cache - L2 Cache - Main memory (per PE)	N/A N/A 32 GB/s	20 GB/s 13 GB/s 2 GB/s	
Inter-node MPI communication - Latency - Bandwidth	8.6 sec 11.8 GB/s	5 sec 300 MB/s	

Los Alamos

"Its life Jim, but not as we know it"

"Its performance Jim, but not as we expected it"

PAL Need to have an expectation

 single processors, interactions within nodes, interaction between nodes (communication networks), I/O

- Large cost for development, deployment and maintenance
- Need to know in advance what performance will be.

CCS-3 Performance Model for SAGE

- Identify and understand the key characteristics of code
- Main Data structure decomposition: Slab
 - communications scale as number of PEs (^2/3)
 - communication distance (PEs) increases
 - Effect of network topology

Processing Stages

- Gather data, Computation, Scatter Data

4

152

152

6860

6860

PAL Scaling Characteristics

8PEs

2PEs

64PEs

• Validated on large-scale platforms:

- ASCI Blue Mountain (SGI Origin 2000)
- CRAY T3E
- ASCI Red (intel)
- ASCI White (IBM SP3)
- Compaq Alphaserver SMP clusters

PAL Experience: Compaq Installation ^{ccs-3}

- Model provided expected performance
- Installation performed in stages

Late 2001:

Early 2002: upgraded PCI

-> Model used to validate measurements!

Other factors: accurately predicted when 2-rails improves the performance (P>41)

More recently: (Jan 2003)

- Performance of ASCI Q is now with ~10% of our expectation
- Without a model we would not have identified (and solved) the poor performance!

EAL SWEEP3D Particle Transport: 2-D ^{ccs-3} Pipeline Parallelism

- S_N transport using discrete ordinates method
- wavefronts of computation propagate across grid
- Model for Sweep3D accurately captures the performance

Basis for Performance Comparison

- Use validated performance models (trusted) to predict performance
- Large problem size (Weak scaling) to fill available memory
 Problem size on Q is double that on the Earth Simulator

• Compare processing rate:

- Equal processor count basis (1 to 5120)
- % of system used (10 to 100%)

But have an unknown:

- performance of codes on single Earth Simulator processor
- -> Consider range of values

Parameter		Alpha ES45	Earth Simulator	
P _{SMP}	Processors per node	4	8	
CL	Communication Links per Node	1	1	
E	Number of level 0 cells	35,000	17,500	
f _{GS_r} f _{GS_l}	Frequency of real and integer gather-scatters per cycle	377 22	377 22	
T _{comp} (E)	Sequential Computation time per cell	68.6 s	 42.9 s (%5 of peak) 21.4 s (%10 of peak) 14.3 s (%15 of peak) 10.7 s (%20 of peak) 8.6 s (%25 of peak) 7.1 s (%30 of peak) 	
L _c (S,P)	Bi-directional MPI communication Latency	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 s	
<i>B_c</i> (<i>S</i> , <i>P</i>)	Bi-directional MPI communication Bandwidth (per direction)	$\begin{array}{cccc} 0.0 & S < 64 \\ 78MB/s & 64 & S & 512 \\ 120MB/s & S > 512 \end{array}$	10 <i>GB</i> /s	

Los Alamos

- Weak-scaling
- ASCI Q between 2.2 and 2.8 times faster than ASCI White
- Data from Model (validated to 4096 PEs on Q, 8192 PEs on White)

Los Alamos

 Single Processor time is unknown – modeled using range of values

CCS-3

(Equal processor count)

- Ratio of processor peak-performance is 3.2 (red line)
- In nearly all cases: Earth Simulator performance is better than ratio of processor peak-performance

- Ratio of system peak-performance is 2 (red line)
- In nearly all cases: Earth Simulator better than ratio of system peak-performance

PALI SAGE: Component Time Predictions

- 10% case considered on Earth Simulator
- Higher bandwidth component on Alpha
- Latency cost on Earth Simulator is more visible
 - reduced computation (x3.2), increased bandwidth (x40), latency ~same

EALI How many Alpha nodes Earth Simulator for SAGE?

% of single-processor peak achieved on Earth Simulator

- 1 ES45 1.25GHz = 10GFlops, or 1,000 nodes = 10Tflops
- If assume a 10% of peak on ES -> need 67Tflops of EV68 Alphas

Los Alamos

PAL Sweep3D: Processing Rate ccs-3

Again, range of values for Earth Simulator unknown single processor time

EAL Sweep3D: Earth Simulator vs Q ²⁵⁻³ (Equal processor count)

- Ratio of processor peak-performance is 3.2 (red line)
- At large PE counts: Earth Simulator performance is worse than ratio of processor peak-performance

PALI Sweep3D: Earth Simulator vs Q ^{cs-3} (% of system utilized)

- Ratio of system peak-performance is 2 (red line)
- Using more than 15% of system: Earth Simulator performance is worse than ratio of system peak-performance

PAL Sweep3D: Component Time Predictions

- 5% case considered for the Earth Simulator
- Higher Latency component than SAGE on both systems
 - Significant
- Pipeline effect can be seen on higher PE counts

EAL How many Alpha nodes Earth Simulator for Sweep3D?

- 1 ES45 1.25GHz = 10GFlops, or 1,000 nodes = 10Tflops
- If assume a 5% of peak on ES -> need 12Tflops of EV68 Alphas

Los Alamos

PAUHypothetical Workload:Assume 40% SAGE and 60% Sweep

		SAGE % of singleprocessor peak					
		5%	10%	15%	20%	25%	30%
S w e e p 3 D	5%	23	34	42	48	53	57
	10%	27	38	47	53	57	61
	15%	30	41	50	56	60	64
	20%	34	45	53	59	64	68
	25%	38	49	57	63	68	72
	30%	41	52	60	66	71	75

- Numbers in table indicate a peak Tflop rated Alpha ES45 system that would achieve the same performance as the Earth Simulator
- Currently: SAGE on NEC SX-6 achieved 5% on first run (Sweep3D expected to be less). This may improve over time.

Los Alamos

- Models have provided quantitative information on the longdebated efficiency of large, microprocessor-based systems for HPC (instead of smaller, more-powerful but special-purpose vector systems)
- **Comparison of the Earth Simulator and ASCI Q performance is** heavily dependent on the workload
 - At present, an Alpha system of approx. 23Tflops peak would achieve the same level of performance as the Earth Simulator on the workload considered here (60% Sweep3D, and 40% SAGE).

Results gives a 'reference' comparison

- The achievable performance on the NEC SX-6 (or Earth Simulator node) may change over time. This analysis will stay valid for the systems as they presently are.

Models have also been used for:

- Design studies (architecture and software, e.g IBM PERCS HPCS)
- During ASCI Q installation (to validate observed performance)
- In the procurement of ASCI Purple
- Performance comparison of systems

www.c3.lanl.gov/par_arch ____ Los Alamos