Electron-Molecule Collision Calculations on Vector and MPP Systems

Carl Winstead Vincent McKoy

Work supported by

Electron-molecule collisions in plasmas

- Elastic collisions affect electron transport and energy deposition
- Inelastic collisions deposit large amounts of energy and create reactive fragments
 - ionization
 - dissociation

Electron-impact dissociation in plasmas

Electron-molecule collision data

- Measurements are often unavailable
 - few groups engaged in the work
 - some gases hazardous or difficult to work with
 - measurements of inelastic cross sections especially challenging
- Calculations are an alternative

Requirements

- At the low impact energies of interest, an accurate quantum-mechanical treatment of the collision is necessary
- A method must address
 - Molecular targets of arbitrary symmetry
 - Exchange interactions (indistinguishable particles)
 - Target polarization (distortion of molecular electron density)
 - Electronic excitation (multichannel problem)

Variational approach

- Variational methods are widely used to obtain useful approximate solutions to many-body problems
- Variational methods for collisions generally lead to matrix equations of the form

Ax=b

where **A** and **b** are known matrices

The Schwinger multichannel (SMC) method

- We use a multichannel extension of the variational principle introduced by J.
 Schwinger in 1947
- Applicable to molecules of arbitrary shape
- Treats inelastic as well as elastic collisions

Electron collision calculations

- Accurate calculations scale rapidly with molecular size
- Calculations on larger fluorocarbons such as c-C₄F₈, c-C₅F₈ require very high operation counts (10¹⁵-10¹⁶)

Integrals, integrals, and more integrals

 Construction of A and b requires the evaluation and transformation of large numbers of two-electron repulsion integrals of the type

 $d^{3}r_{1} d^{3}r_{2} (\mathbf{r}_{1}) (\mathbf{r}_{1})\Omega\mathbf{r}_{1}-\mathbf{r}_{2}\Omega^{1} (\mathbf{r}_{2})\exp(i\mathbf{k}\cdot\mathbf{r}_{2})$

where , , and are Cartesian Gaussian functions of the form $f(x, y, z) \exp(-|\mathbf{r}-\mathbf{R}|^2)$.

- Scaling is
 - $N_g^3 N_k$ for evaluating integrals
 - $N_g^4 N_k$ for transforming integrals

How many?

- 10¹⁰-10¹³ integrals (10¹²-10¹⁵ floating-point operations) are typical for 5-15 atom systems
- Transformation of these integrals requires of the order of 10¹²-10¹⁶ floating-point operations
- Single-processor speeds 10⁹ floating-point operations/sec
- 10¹⁶ operations @ 10⁹ operations/sec 100 processor-days

Parallel computers are necessary

- Complete calculations for polyatomic gases used in plasma processing (C₂F₆, *c*-C₄F₈) are impractical on single-processor computers
- Multiprocessor (parallel) computers provide the aggregate computational power (raw speed, memory, and I/O bandwidth) to make such calculations feasible
- Single-processor computation on PVPs and workstations continues to play a role

Role of PVP Systems

- Not all code worth parallelizing
 - Some steps more disk-intensive than CPUintensive
 - Others logically intricate but with low operation count
 - If scaling with problem size acceptable, retaining uniprocessor approach preferable
 - Most of our program (by line count) in this category
- Non- or poorly-parallelized third-party applications used in problem setup phase

PVP vs. Workstation/Server

- Find x86/Linux systems increasingly competitive (Moore's Law)
- Our largest uniprocessor problems still use PVP (SV1)
 - Large, fast disk
 - Memory per process
 - CPU performance sufficient

Example: SV1 vs. P4/1.8GHz

- SF₆ electron-impact excitation problem
- Uniprocessor phase:
 - $-1.7_{-}10^{12}$ floating-point operations
 - 88% in 4-index transformation
 - Transformation step involves matrix multiplication and (heavy) disk access

Example: SV1 vs. P4/1.8GHz

- SV1
 - -73 MFLOP overall
 - 175 MFLOP in 4-index transformation
 - Integral generation very slow (11900 s)
- Pentium 4 workstation
 - Not enough disk to complete
 - 100 MFLOP in 4-index transformation
 - Integral generation very fast (~ 780 s)

Parallel strategy

- Distribute integral evaluation across
 processors
 - no interprocessor communication required
- Distributing the transformation is more challenging
 - however, can be mapped to multiplication of large, dense, distributed matrices
- Performance reaches significant fraction of peak for large problems

Achieving good scaling

- Critical communication localized in distributed-matrix multiplication
 - Favorable computation-to-communication ratio
 - Easy to optimize
- On T3E, use shared-memory operations in this one step (MPI elsewhere)
- Low latency and flat interconnect helpful
 - Scaling less favorable on some NUMA architectures

Scaling on different platforms

Comparison with experiment: C₂F₆

Calculated elastic differential cross sections at 15, 20, and 30 eV impact energy compared to data of Takagi *et al.*, J. Phys. B **27**, 5389 (1994)

C_2F_4 electron-impact excitation: the 1 $^{1,3}B_{1u}$ (T and V) states

Cross sections for (*) excitation, leading to the T (triplet) and V (singlet) states. The V state has a large cross section, as expected.

Both processes are expected to contribute to dissociation into neutral fragments, with CF₂ production likely.

Comparison of calculated and measured swarm parameters

The predictions obtained from the final cross section set agree well with the measured swarm data.

At high *E/N,* the twoterm approximation fails, and it is necessary to employ Monte Carlo simulation.

Conclusions

- Electron-molecule collision calculations can contribute to plasma modeling
- Need for higher performance continues
- MPP and/or cluster systems vital
- Role for 1- or few-processor systems
 Vector or IA32/IA64 ?
- Looking forward to X1