
CUG 2004 Proceedings 1

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

Edward Anderson, Maynard Brandt and Chao Yang, Cray Inc.

ABSTRACT: The "massively parallel" LINPACK benchmark is a familiar measure of high-
performance computing performance and a useful check of the scalability of multi-processor
computing systems. The CRAY X1 performs well on this benchmark, achieving in excess of
90% of peak performance per processor and near linear scalability. This paper will outline
Cray's implementation of the LINPACK benchmark code and show how it leads to
computational kernels that are easier to optimize than those of ScaLAPACK or the High
Performance LINPACK code, HPL. Specific areas in which the algorithm has been tuned for
the CRAY X1 are in communicating across rows or down columns, in interchanging rows to
implement partial pivoting, and in multiplying dense matrices.
 The Cray LINPACK benchmark code has also been adapted to run on a virtual processor
grid, that is, a p-by-q grid where p·q is a multiple of the number of processors. This feature is
especially pertinent when the number of processors does not factorize neatly, but it can be
used in any situation in which it is desired to assign more processors to row or column
operations. The virtual processor grid concept is not specific to the LINPACK benchmark
and could be applied to any application that uses a 2-D grid decomposition.

1. Introduction

The LINPACK benchmark attracts a lot of attention from
performance analysts because it is the metric used to rank
systems for the biannual Top 500 list (www.top500.org). It
is also a good predictor of performance for certain
applications involving the solution of large dense linear
systems or eigenvalue problems. The rules for the “highly
parallel” LINPACK benchmark (Table 3 in [5]) allow any
problem size and any algorithm to be used as long as it
solves a dense 64-bit real linear system, Ax = b. In practice,
the algorithm is always some form of Gaussian elimination
with partial pivoting, and for maximum efficiency, the
problem size is usually the largest problem that will fit in
memory. An excellent implementation of the LINPACK
benchmark for distributed memory systems is High
Performance LINPACK (HPL) [6], a C code loosely based
on ScaLAPACK [3].

In this paper we describe an alternative implementation of
the LINPACK benchmark developed at Cray Inc. that has
been used on CRAY T3E and CRAY X1 systems. We will
refer to this implementation as the Cray LINPACK
Benchmark code. The Cray LINPACK Benchmark code is
written in a mix of C and Fortran and uses Cray’s one-sided
message-passing library SHMEM [4] for communication.
Like HPL, it assumes a 2-D block cyclic distribution of the
matrix A and solves an augmented system using a block
right-looking algorithm. Unlike HPL, it stores the
distribution blocks by rows, instead of by columns. This

storage order optimizes the memory access pattern of the
dominant matrix multiply kernel for the highest levels of the
memory hierarchy and preserves the logical structure of the
distribution blocks. It is also a natural fit for a
generalization of the usual 2-D processor grid into a virtual
processor grid, that is, a p-by-q grid where p·q is a multiple
of the number of processors.

2. Solving linear systems on distributed

memory computers

The computation measured in the LINPACK benchmark is
the solution of a dense linear system Ax = b, where A is an
n-by-n 64-bit real matrix of full rank and b is a vector of
length n. The standard technique for this problem uses
Gaussian elimination with partial pivoting to compute a
factorization A = LU, where L is a product of permutation
and unit lower triangular matrices and U is upper triangular,
from which the solution can be obtained by solving Ly = b
for y and Ux = y for x. When there is only one right-hand
side vector b, it is advantageous to solve an augmented
system, in which b is stored as the (n+1)st column of the
array A. Then the factorization applies L-1 to b to form y,
and the solution can be determined in one additional step by
solving the triangular system Ux = y by back substitution.

To solve Ax = b on a distributed memory computer, the
matrix A is partitioned among the processors using a block-
cyclic distribution on a 2-D processor grid. One possible
assignment of blocks to processors on a 2-by-3 processor

CUG 2004 Proceedings 2

grid is shown in Figure 1. The tiling pattern repeats as
many times as is necessary, and the last row or column of
blocks may be empty on some processors. The distribution
block size and the aspect ratio of the processor grid are
tunable parameters, although choices for the p-by-q grid are
limited by the number of ways to factor the number of
processors, Np.

Figure 1: Block-cyclic distribution on a 2×3 processor grid

The “right-looking” algorithm to compute an LU
factorization of a matrix A stored as in Figure 1 is described
as follows. First, a panel of column blocks is factored using
Gaussian elimination with partial pivoting. Next,
information about the sequence of row interchanges that
was used is broadcast to the other processors, and the row
interchanges are applied to the rest of the matrix. The
current block row is then updated by applying the
transformations contained in the diagonal block; this
operation consists of a triangular solve with multiple right
hand sides and is performed locally by the Level 3 BLAS
routine xTRSM. Finally the block column below the
diagonal block is communicated across rows and the block
row to the right of the diagonal block is communicated
down columns, and the rest of the matrix is updated by a
rank-nb update, performed locally by the Level 3 BLAS
routine xGEMM.

Block algorithms were first developed for shared memory
computers in order to increase the re-use of data at the
highest levels of the memory hierarchy and thereby improve
performance. In the numerical linear algebra package
LAPACK [1], the block size is an internal parameter, used
only for tuning; it does not affect how the 2-D matrix is
stored. In ScaLAPACK [3], an extension of LAPACK for
distributed-memory computers, the distribution block size is
analogous to the algorithm block size in LAPACK, and
distributed BLAS were developed analogous to the standard
BLAS so that much of the algorithmic structure of
LAPACK could be preserved. Since Fortran stores arrays in

column-major order, ScaLAPACK stored the distribution
blocks column-wise on each processor, making the local
portion of the distributed matrix a 2-D matrix as in the
shared-memory case.

The High Performance LINPACK code (HPL) [6] is a
specialized version of the ScaLAPACK routine to solve a
dense real linear system, put into a LINPACK Benchmark
context with options for tuning. Like ScaLAPACK, HPL
stores the distribution blocks column-wise on each
processor, but it provides an option for storing the transpose
of the matrix for better cache use on some architectures.

3. Row-wise storage of distribution blocks
While the column-wise storage of local distribution blocks
is central to the ScaLAPACK design, there are both
notational and performance disadvantages to storing these
blocks in a 2-D array. First, the blocking factors used in the
distribution are lost in this data structure and must be carried
along in an array descriptor, separate from the array A.
Although a distribution block is a natural piece for the
algorithm designer to work with, it exists only as a sub-
block of the 2-D array. Elements in the same column of a
block of A are accessed with unit stride, but elements in the
same row are accessed with a stride that grows with the
matrix size. For very large problems, such as those solved
in the LINPACK benchmark, even a small sub-block may
span several memory pages, increasing the latency to load
the sub-block into cache. Also, successively larger row
strides will each have a different footprint in the cache,
making it difficult to predict the performance of the
algorithm for larger sizes based on the performance for
smaller problems.

In the Cray LINPACK Benchmark code, the distribution
blocks are stored row-wise on the local processors. This
organization of blocks is most conveniently described by a
4-D array

 A(nb, nb, ncblks, nrblks)

where the first two indices describe an nb-by-nb distribution
block and the last two indices describe the local column
index and row index of each block, respectively. For
example, the first element of the last block stored on
processor 5 in Figure 1 would be A(1, 1, 2, 3), since it is
the (1,1) element in the second column of blocks and the
third row of blocks on processor 5.1 Assuming the blocks
are stored one after the other, this data structure can be
regarded as nrblks block rows of size nb-by-nb·ncblks where
it is convenient to do so.

1 In Co-array Fortran notation, we could be even more complete
and call the element A(1, 1, 2, 3; 5).

 4 0 2 0 2 4

 5 1 3 1 3 5

 4 0 2 0 2 4

 1 5 1 3 3 5

 4 0 2 0 2 4

 1 5 1 3 3 5

CUG 2004 Proceedings 3

Row-wise storage of blocks maintains the natural contiguity
of the distribution blocks and facilitates their movement to
the highest levels of the memory hierarchy. Because a
block is contiguous in memory, its mapping to an
associative cache is known a priori and its size can be
chosen to fit in a given segment of cache. Also, a block row
of local distribution blocks is contiguous, so a rank-nb
update as in the LINPACK benchmark will result in a unit
stride access pattern for the entire block row, as shown in
Figure 2. This access pattern can take advantage of stream
buffers or hardware prefetch instructions if they are
available.

A disadvantage of storing the distribution blocks row-wise
is that it requires additional indexing of the local blocks. It
also may not be any better than the standard technique
unless the library routines have been optimized for it. But it
has the potential to be a higher-performing alternative.

4. Optimization of the matrix multiply kernel
In the Cray LINPACK Benchmark code, the main matrix
multiply kernel is an nb-by-nb matrix A times an nb-by-n
matrix B added to an nb-by-n matrix C to produce an nb-by-
n result. The memory access pattern for this operation is
shown in Figure 2. On the CRAY T3E, the innermost
kernel was a matrix-vector multiply. The first time the
block of A was used, it would be loaded from memory, but
subsequently it would likely be found in the on-chip
secondary cache (Scache) of the CRAY T3E processor. A
would multiply a column of B loaded from memory, and the
result vector would be accumulated in registers before being
written to C. If the leading dimension of the B array
matched the block size nb, then the columns of B would be
accessed in one continuous stream, activating the stream
buffers of the CRAY T3E processor. The matrix C was also
accessed as one continuous stream. Thus the optimization
of the matrix-vector multiply kernel for the CRAY T3E
consisted of loading elements of A early enough to hide the
Scache latency, spacing the operations far enough apart to
hide the floating-point unit latency, and prefetching
elements of the B vector to hide its latency from the stream
buffers.

Constraints in the CRAY T3E processor design limited the
matrix multiply performance to about 75% of peak. First,
there were only 31 scalar floating-point registers, which
were needed for accumulating the result vector as well as
for temporarily holding elements of A and B. The latency of
approximately 10 clock periods (CP) to Scache and 4 CP for
the floating-point unit made instruction scheduling for
cached data a challenge. The compiler and most of the
scientific library unrolled loops by 4 or 8; for LINPACK, a
special-purpose kernel was created that was unrolled by 12.
This design meant that the optimal distribution block size nb
was a multiple of 12. The nb-by-nb block had to fit in the

Scache of the T3E, which was 96 KB or 12 KW, but
because of the random replacement policy of the 3-way set
associative Scache, it was better to size the block for only
one 4096 word set of the Scache. Thus the biggest possible
block of A was 64-by-64, and coupled with the multiple of
12 requirement and the 8-word Scache line size, the optimal
block size for the CRAY T3E was 48. Since the innermost
kernel was a 12-by-48 matrix-vector multiply, each vector
of B was used four times as it was multiplied by each of the
four 12-by-48 sub-blocks of A. The first time, B would be
loaded from memory via the stream buffers, but the
subsequent uses would hope to find B in the Scache.
However, if the vector of B had the same relative cache
offset as part of A, the random replacement policy meant
that one of them might need to be reloaded from memory.

The CRAY X1 processor design directly addresses many of
the limitations in the CRAY T3E memory hierarchy. The
CRAY X1 multi-streaming processor (MSP) design is
shown in Figure 3. At the highest level of the hierarchy,
there are 32 vector registers, each of length 64, on each of
the four single-streaming processors (SSPs) of an MSP.
Vector registers are used in the CRAY X1 matrix multiply
kernel to hold elements of A and to accumulate results
before writing back to C. In fact, there are so many
registers available that we can improve the re-use of the A
and B elements and keep all the vector functional units busy
by computing four columns at a time, instead of just one.
Also, the on-chip cache is 2 MB or 256 KW, allowing the
block of A to be up to 512-by-512. Finally, the four SSPs
on an MSP can perform the computations with the four sub-
blocks of A concurrently, accessing elements of B through
their shared cache. The matrix multiply kernel on a CRAY
X1 processor is shown in Figure 4. Sustained performance
of the matrix multiply kernel in the context of the
LINPACK benchmark is approximately 95% of peak.

The matrix-multiply routine xGEMM and the other Level 3
BLAS kernel, xTRSM, are the only parts of the Cray
LINPACK benchmark code that are optimized at the SSP
level. A prototype for the matrix multiply kernel showing
the parallelization across SSPs is shown in Figure 5. This
subroutine is compiled with

ftn -Oaggress -O3 -s default64 –c sgemmnn.f

The SSP code, named DMMNN in this prototype, is
implemented in assembly language to achieve the best
possible instruction scheduling for elements of A that are
expected to be found in the cache.

 subroutine sgemmnn(m, n, k, alpha, a, inra,
 & b, inrb, beta, c, inrc)
 integer m, n, k, inra, inrb, inrc
 real alpha, beta
 real a(inra,*), b(inrb,*), c(inrc,*)
 integer i, js, m4
cdir$ SSP_PRIVATE dmmnn

CUG 2004 Proceedings 4

 m4 = (m+3)/4
 do i = 0, 3
 js = min(m4, max(m-i*m4, 0))
 call dmmnn(js, n, k, alpha, a(1+i*m4,1),
 & inra, b, inrb, beta,
 & c(1+i*m4,1), inrc)
 end do
 return
 end

Figure 5: MSP code for matrix multiply, calling SSP
subroutine dmmnn

5. Optimization of the row interchanges
The row exchange is a target for optimization because it
involves moving data with non-unit stride, all processors
participate, and it is all overhead – no floating point
computations are performed. The sequence of row
interchanges from the panel factorization is described by an
index vector IPIV, where IPIV(i) = j indicates that row i was
exchanged with row j. The indices are not unique, because
a row that is exchanged out of the pivot row block early in
the panel factorization may be copied back into the pivot
row block in an exchange with a later row.2 The challenge
is to turn the description of a sequential process – the row
exchanges of the panel factorization – into a block update
that can be applied to the distributed matrix as a whole.

We do this by translating the IPIV vector into index vectors
ISCAT and IGATH, where ISCAT contains the destination
row indices for the rows of the pivot block row and IGATH
contains the indices of rows of the global array that are
gathered into the rows of the pivot block row. Row indices
in each of these vectors are unique, so the gather or scatter
operation can be done as a block.

Since rows of the local array structure are non-unit stride, it
is more efficient to copy them to a contiguous buffer before
sending them. On processors in the pivot block row, the
ISCAT vector is used to copy any rows to be transferred to a
remote processor to a send buffer. On the remote
processors, the IGATH vector is used to identify local rows
involved in the row exchange and copy them to a buffer as
well. Each processor participating in the row exchange then
synchronizes with the pivot block row, after which each can
get their data from the other’s buffer. A final

2 The most extreme example of row exchanges using partial
pivoting is the matrix

| 0 1 |
 | … |
 | … |

| 0 1 |
| 1 0 |

for which IPIV(1) = … = IPIV(N) = N, i.e., every row is
exchanged with row N.

synchronization when the transfer is complete is required to
indicate that the buffers can be re-used.

In the CRAY LINPACK benchmark code, the local data
copy of selected rows to a contiguous buffer is called
transposeAItoB, and the corresponding routine to copy from
columns of the contiguous buffer back to rows of the local
array structure is called transposeBtoAI. On the CRAY
T3E, these operations were optimized using E-registers, like
other transpose operations [2]. On the CRAY X1, the
vectorizing compiler handles the indexed transpose without
any special effort.

6. The virtual processor grid

One shortcoming of mapping a distributed matrix to a 2-D
processor grid is the 2-D grid itself. If the number of
processors Np is a perfect square, then any operations on a
block column or block row (such as the panel factorization
in the LINPACK benchmark) will involve only sqrt(Np)
processors. Moreover, not every processor count factors
neatly into p·q. For example, early CRAY X1 systems were
shipped with 32 four-processor nodes, with 31 nodes
configured for application use. But the only factorization of
124 is 4×31 (or 31×4), and 123 = 3×41 and 122 = 2×61 are
no better. Rather than leave 3 processors idle and solve the
system on 121 processors, we conceived of using a 32×31
virtual processor grid, in which each physical processor
would handle more than 1 block in the virtual processor
grid.

More generally, one could solve any 2-D problem using Np
processors on a p×q grid such that p×q = k×Np, where k = 1,
p = Np, and lcm(p, Np) = k×Np. The restriction p = Np is
necessary to prevent assigning more than one block in a
column of the virtual processor grid to the same processor,
and the constraint lcm(p, Np) = k×Np simply guarantees that
the virtual processor grid is not a multiple of another smaller
virtual processor grid. Using a virtual processor grid is not
the same as multithreading, because we create only one
process per processor, and the blocks of the virtual
processor grid must sometimes be dealt with in a prescribed
order, not always from 1 to k.

An example using 6 processors on a 4×3 virtual processor
grid is shown in Figure 6. This tiling pattern has two times
the parallelism of a 2×3 grid for column operations. The
only drawback to the virtual processor grid, other than
algorithmic complexity, is a potentially longer
synchronization time when one processor must deal with
more than one of its blocks at a time. For instance, if
column 1 and column 2 of the virtual procesor grid in
Figure 6 exchanged data, then processor 0 would have to
exchange with 4 using its first block before exchanging with
2 using its second block. However, this effect is lessened
on larger virtual grids, such as a 32×31 grid on 124

CUG 2004 Proceedings 5

processors, where the blocks on the same processor are
farther apart.

Figure 6: Six processors in a 4×3 virtual processor grid

In the Cray LINPACK benchmark code, the virtual
processor indexing is handled by adding a 5th dimension to
the local array structure A, which becomes

 A(nb, nb, ncblks, nrblks, nvpi)

For some operations, such as the rank-nb update in the
LINPACK benchmark code, the order of processing the
distribution blocks is not important, so we can update all the
blocks with the same virtual processor index together. In
other cases, particularly communication operations, each
processor must process all its blocks in the virtual processor
grid tile before going on to the next tile. Furthermore, the
order of processing the blocks in a tile may change as the
algorithm progresses, so it is necessary to maintain the
current starting point istart, and process the block numbered
1 + mod(istart + i – 1, nvpi) in a loop from 1 to nvpi.

Figure 7 shows the effect of the virtual processor grid
algorithm on 124 processors of a CRAY X1. Both the 4×31
and 31×4 grids show similar performance, while the 32×31
virtual processor grid is up to 10% faster. In the LINPACK
benchmark, which is so dominated by matrix multiply that
improvements to other parts of the code are usually in the
1% range, this degree of improvement is significant.

7. Summary

In optimizing the LINPACK benchmark for the CRAY X1,
we have found new avenues for performance improvements
in the code originally developed for a CRAY T3E. The
storage order of the distribution blocks is an often
overlooked parameter that affects how the data is mapped to
the memory hierarchy in the main computational kernels.
By parallelizing these kernels across the SSPs of an MSP,
we achieved performance of 95% of peak for matrix
multiplication and over 90% for the LINPACK benchmark
overall. To further reduce inefficiencies in the row or
column operations, which involve only a subset of the
processors, we introduce the concept of a virtual processor
grid. A side benefit of this technique is that one can model

the solution of a problem on k·Np processors using only Np
processors if it will fit in memory.

Acknowledgements
The authors wish to acknowledge Jeff Brooks for his
insights in the development of the original Cray LINPACK
Benchmark code, and Mike Aamodt of the Benchmarking
group for his support of the CRAY X1 benchmarking
efforts.

References
[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J.

Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.
Hammarling, A. McKenney, and D. Sorensen,
LAPACK Users’ Guide, Third Edition, SIAM,
Philadelphia, 1999. (www.netlib.org/lapack)

[2] E. Anderson, J. Brooks, and T. Hewitt, “The
Benchmarker's Guide to Single-processor Optimization
for CRAY T3E Systems”, Cray Research technical
report, 1997. (available at
ftp://ftp.arsc.edu/pub/mpp/docs/bmguide.ps.Z)

[3] L. S. Blackford et al., ScaLAPACK Users’ Guide,
SIAM, Philadelphia, 1997. (www.netlib.org/scalapack)

[4] Cray Inc., Man Page Collection: Shared Memory
Access (SHMEM), S-2383-23, 2003. (available at
www.cray.com/craydoc)

[5] J. J. Dongarra, “Performance of Various Computers
Using Standard Linear Equations Software”, Technical
Report CS-89-85, University of Tennessee. (updated
version at www.netlib.org/benchmark/performance.ps)

[6] A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary, “HPL
- A Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory
Computers”, Version 1.0a, Jan. 2004. (available at
www.netlib.org/benchmark/hpl/)

About the Authors
Ed Anderson is a consultant to Cray Inc. working with the
Benchmarking group. He worked for Cray Research in the
Scientific Libraries and Benchmarking groups from 1991—
1998. Ed can be reached at eanderson@na-net.ornl.gov.
Maynard Brandt retired from Cray Inc. in 2004 after many
years in the Benchmarking group. He still lives in the
Minneapolis/St. Paul area and can be found at Gopher
basketball games. Chao Yang is a Senior Applications
Analyst with Cray Inc., specializing in mathematical
software development. Chao can be reached at Cray Inc.,
1340 Mendota Heights Road, Mendota Heights, MN,
55120, cwy@cray.com.

 2 4 0

 3 5 1

 4 0 2

 3 5 1

CUG 2004 Proceedings 6

× =

Figure 2: Matrix-multiply C = A*B on the CRAY T3E, highlighting the matrix-vector kernel

Figure 3: CRAY X1 multi-streaming processor design

Figure 4: Matrix-multiply C = A*B on the CRAY X1, highlighting the SSP parallelism and computation of four vectors
concurrently.

nb

 n nb n

=

 SSP1

 SSP2

 SSP3

 SSP0

nb

 n nb n

= ×

×

CUG 2004 Proceedings 7

Figure 7: LINPACK Benchmark performance on a virtual processor grid, compared to a conventional processor grid

LINPACK Benchmark Performance
CRAY X1, 124 MSPs

0

200

400

600

800

1000

1200

1400

1600

0 50000 100000 150000 200000 250000

N

G
flo

p/
s 4x31 grid

31x4 grid
32x31 grid

