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ABSTRACT: The "massively parallel" LINPACK benchmark is a familiar measure of high-
performance computing performance and a useful check of the scalability of multi-processor 
computing systems.  The CRAY X1 performs well on this benchmark, achieving in excess of 
90% of peak performance per processor and near linear scalability.  This paper will outline 
Cray's implementation of the LINPACK benchmark code and show how it leads to 
computational kernels that are easier to optimize than those of ScaLAPACK or the High 
Performance LINPACK code, HPL.  Specific areas in which the algorithm has been tuned for 
the CRAY X1 are in communicating across rows or down columns, in interchanging rows to 
implement partial pivoting, and in multiplying dense matrices. 
 The Cray LINPACK benchmark code has also been adapted to run on a virtual processor 
grid, that is, a p-by-q grid where p·q is a multiple of the number of processors.  This feature is 
especially pertinent when the number of processors does not factorize neatly, but it can be 
used in any situation in which it is desired to assign more processors to row or column 
operations.  The virtual processor grid concept is not specific to the LINPACK benchmark 
and could be applied to any application that uses a 2-D grid decomposition. 

1. Introduction 

The LINPACK benchmark attracts a lot of attention from 
performance analysts because it is the metric used to rank 
systems for the biannual Top 500 list (www.top500.org).  It 
is also a good predictor of performance for certain 
applications involving the solution of large dense linear 
systems or eigenvalue problems.  The rules for the “highly 
parallel” LINPACK benchmark (Table 3 in [5]) allow any 
problem size and any algorithm to be used as long as it 
solves a dense 64-bit real linear system, Ax = b.  In practice, 
the algorithm is always some form of Gaussian elimination 
with partial pivoting, and for maximum efficiency, the 
problem size is usually the largest problem that will fit in 
memory.  An excellent implementation of the LINPACK 
benchmark for distributed memory systems is High 
Performance LINPACK (HPL) [6], a C code loosely based 
on ScaLAPACK [3]. 
 
In this paper we describe an alternative implementation of 
the LINPACK benchmark developed at Cray Inc. that has 
been used on CRAY T3E and CRAY X1 systems.  We will 
refer to this implementation as the Cray LINPACK 
Benchmark code.  The Cray LINPACK Benchmark code is 
written in a mix of C and Fortran and uses Cray’s one-sided 
message-passing library SHMEM [4] for communication.  
Like HPL, it assumes a 2-D block cyclic distribution of the 
matrix A and solves an augmented system using a block 
right-looking algorithm.  Unlike HPL, it stores the 
distribution blocks by rows, instead of by columns.  This 

storage order optimizes the memory access pattern of the 
dominant matrix multiply kernel for the highest levels of the 
memory hierarchy and preserves the logical structure of the 
distribution blocks.   It is also a natural fit for a 
generalization of the usual 2-D processor grid into a virtual 
processor grid, that is, a p-by-q grid where p·q is a multiple 
of the number of processors. 
 
2. Solving linear systems on distributed 

memory computers 

The computation measured in the LINPACK benchmark is 
the solution of a dense linear system Ax = b, where A is an 
n-by-n 64-bit real matrix of full rank and b is a vector of 
length n.  The standard technique for this problem uses 
Gaussian elimination with partial pivoting to compute a 
factorization A = LU, where L is a product of permutation 
and unit lower triangular matrices and U is upper triangular, 
from which the solution can be obtained by solving Ly = b 
for y and Ux = y for x.  When there is only one right-hand 
side vector b, it is advantageous to solve an augmented 
system, in which b is stored as the (n+1)st column of the 
array A.  Then the factorization applies L-1 to b to form y, 
and the solution can be determined in one additional step by 
solving the triangular system Ux = y by back substitution. 
 
To solve Ax = b on a distributed memory computer, the 
matrix A is partitioned among the processors using a block-
cyclic distribution on a 2-D processor grid.  One possible 
assignment of blocks to processors on a 2-by-3 processor 
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grid is shown in Figure 1.  The tiling pattern repeats as 
many times as is necessary, and the last row or column of 
blocks may be empty on some processors. The distribution 
block size and the aspect ratio of the processor grid are 
tunable parameters, although choices for the p-by-q grid are 
limited by the number of ways to factor the number of 
processors, Np. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  Block-cyclic distribution on a 2×3 processor grid 
 
The “right-looking” algorithm to compute an LU 
factorization of a matrix A stored as in Figure 1 is described 
as follows.  First, a panel of column blocks is factored using 
Gaussian elimination with partial pivoting.  Next, 
information about the sequence of row interchanges that 
was used is broadcast to the other processors, and the row 
interchanges are applied to the rest of the matrix.  The 
current block row is then updated by applying the 
transformations contained in the diagonal block; this 
operation consists of a triangular solve with multiple right 
hand sides and is performed locally by the Level 3 BLAS 
routine xTRSM.  Finally the block column below the 
diagonal block is communicated across rows and the block 
row to the right of the diagonal block is communicated 
down columns, and the rest of the matrix is updated by a 
rank-nb update, performed locally by the Level 3 BLAS 
routine xGEMM. 
 
Block algorithms were first developed for shared memory 
computers in order to increase the re-use of data at the 
highest levels of the memory hierarchy and thereby improve 
performance.  In the numerical linear algebra package 
LAPACK [1], the block size is an internal parameter, used 
only for tuning; it does not affect how the 2-D matrix is 
stored.  In ScaLAPACK [3], an extension of LAPACK for 
distributed-memory computers, the distribution block size is 
analogous to the algorithm block size in LAPACK, and 
distributed BLAS were developed analogous to the standard 
BLAS so that much of the algorithmic structure of 
LAPACK could be preserved.  Since Fortran stores arrays in 

column-major order, ScaLAPACK stored the distribution 
blocks column-wise on each processor, making the local 
portion of the distributed matrix a 2-D matrix as in the 
shared-memory case. 
 
The High Performance LINPACK code (HPL) [6] is a 
specialized version of the ScaLAPACK routine to solve a 
dense real linear system, put into a LINPACK Benchmark 
context with options for tuning.  Like ScaLAPACK, HPL 
stores the distribution blocks column-wise on each 
processor, but it provides an option for storing the transpose 
of the matrix for better cache use on some architectures. 

3. Row-wise storage of distribution blocks 
While the column-wise storage of local distribution blocks 
is central to the ScaLAPACK design, there are both 
notational and performance disadvantages to storing these 
blocks in a 2-D array.  First, the blocking factors used in the 
distribution are lost in this data structure and must be carried 
along in an array descriptor, separate from the array A.  
Although a distribution block is a natural piece for the 
algorithm designer to work with, it exists only as a sub-
block of the 2-D array.  Elements in the same column of a 
block of A are accessed with unit stride, but elements in the 
same row are accessed with a stride that grows with the 
matrix size.  For very large problems, such as those solved 
in the LINPACK benchmark, even a small sub-block may 
span several memory pages, increasing the latency to load 
the sub-block into cache.  Also, successively larger row 
strides will each have a different footprint in the cache, 
making it difficult to predict the performance of the 
algorithm for larger sizes based on the performance for 
smaller problems. 
 
In the Cray LINPACK Benchmark code, the distribution 
blocks are stored row-wise on the local processors.  This 
organization of blocks is most conveniently described by a 
4-D array 
 
 A( nb, nb, ncblks, nrblks ) 
 
where the first two indices describe an nb-by-nb distribution 
block and the last two indices describe the local column 
index and row index of each block, respectively.  For 
example, the first element of the last block stored on 
processor 5 in Figure 1 would be A( 1, 1, 2, 3 ), since it is 
the (1,1) element in the second column of blocks and the 
third row of blocks on processor 5.1  Assuming the blocks 
are stored one after the other, this data structure can be 
regarded as nrblks block rows of size nb-by-nb·ncblks where 
it is convenient to do so. 
 

                                                
1 In Co-array Fortran notation, we could be even more complete 
and call the element A( 1, 1, 2, 3; 5 ). 

 4  0  2  0  2  4 

 5  1  3  1  3  5 

 4  0  2  0  2  4 

 1  5  1  3  3  5 

 4  0  2  0  2  4 

 1  5  1  3  3  5 
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Row-wise storage of blocks maintains the natural contiguity 
of the distribution blocks and facilitates their movement to 
the highest levels of the memory hierarchy.  Because a 
block is contiguous in memory, its mapping to an 
associative cache is known a priori and its size can be 
chosen to fit in a given segment of cache.  Also, a block row 
of local distribution blocks is contiguous, so a rank-nb 
update as in the LINPACK benchmark will result in a unit 
stride access pattern for the entire block row, as shown in 
Figure 2.  This access pattern can take advantage of stream 
buffers or hardware prefetch instructions if they are 
available. 
 
A disadvantage of storing the distribution blocks row-wise 
is that it requires additional indexing of the local blocks.  It 
also may not be any better than the standard technique 
unless the library routines have been optimized for it.  But it 
has the potential to be a higher-performing alternative. 

4. Optimization of the matrix multiply kernel 
In the Cray LINPACK Benchmark code, the main matrix 
multiply kernel is an nb-by-nb matrix A times an nb-by-n 
matrix B added to an nb-by-n matrix C to produce an nb-by-
n result.  The memory access pattern for this operation is 
shown in Figure 2.  On the CRAY T3E, the innermost 
kernel was a matrix-vector multiply.  The first time the 
block of A was used, it would be loaded from memory, but 
subsequently it would likely be found in the on-chip 
secondary cache (Scache) of the CRAY T3E processor.  A 
would multiply a column of B loaded from memory, and the 
result vector would be accumulated in registers before being 
written to C.  If the leading dimension of the B array 
matched the block size nb, then the columns of B would  be 
accessed in one continuous stream, activating the stream 
buffers of the CRAY T3E processor.  The matrix C was also 
accessed as one continuous stream.  Thus the optimization 
of the matrix-vector multiply kernel for the CRAY T3E 
consisted of loading elements of A early enough to hide the 
Scache latency, spacing the operations far enough apart to 
hide the floating-point unit latency, and prefetching 
elements of the B vector to hide its latency from the stream 
buffers. 
 
Constraints in the CRAY T3E processor design limited the 
matrix multiply performance to about 75% of peak.  First, 
there were only 31 scalar floating-point registers, which 
were needed for accumulating the result vector as well as 
for temporarily holding elements of A and B.  The latency of 
approximately 10 clock periods (CP) to Scache and 4 CP for 
the floating-point unit made instruction scheduling for 
cached data a challenge.  The compiler and most of the 
scientific library unrolled loops by 4 or 8; for LINPACK, a 
special-purpose kernel was created that was unrolled by 12.  
This design meant that the optimal distribution block size nb 
was a multiple of 12.  The nb-by-nb block had to fit in the 

Scache of the T3E, which was 96 KB or 12 KW, but 
because of the random replacement policy of the 3-way set 
associative Scache, it was better to size the block for only 
one 4096 word set of the Scache.  Thus the biggest possible 
block of A was 64-by-64, and coupled with the multiple of 
12 requirement and the 8-word Scache line size, the optimal 
block size for the CRAY T3E was 48.  Since the innermost 
kernel was a 12-by-48 matrix-vector multiply, each vector 
of B was used four times as it was multiplied by each of the 
four 12-by-48 sub-blocks of A.  The first time, B would  be 
loaded from memory via the stream buffers, but the 
subsequent uses would hope to find B in the Scache.  
However, if the vector of B had the same relative cache 
offset as part of A, the random replacement policy meant 
that one of them might need to be reloaded from memory. 
 
The CRAY X1 processor design directly addresses many of 
the limitations in the CRAY T3E memory hierarchy.  The 
CRAY X1 multi-streaming processor (MSP) design is 
shown in Figure 3.  At the highest level of the hierarchy, 
there are 32 vector registers, each of length 64, on each of 
the four single-streaming processors (SSPs) of an MSP.  
Vector registers are used in the CRAY X1 matrix multiply 
kernel to hold elements of A and to accumulate results 
before writing back to C.  In fact, there are so many 
registers available that we can improve the re-use of the A 
and B elements and keep all the vector functional units busy 
by computing four columns at a time, instead of just one.  
Also, the on-chip cache is 2 MB or 256 KW, allowing the 
block of A to be up to 512-by-512.  Finally, the four SSPs 
on an MSP can perform the computations with the four sub-
blocks of A concurrently, accessing elements of B through 
their shared cache.  The matrix multiply kernel on a CRAY 
X1 processor is shown in Figure 4.  Sustained performance 
of the matrix multiply kernel in the context of the 
LINPACK benchmark is approximately 95% of peak. 
 
The matrix-multiply routine xGEMM and the other Level 3 
BLAS kernel, xTRSM, are the only parts of the Cray 
LINPACK benchmark code that are optimized at the SSP 
level.  A prototype for the matrix multiply kernel showing 
the parallelization across SSPs is shown in Figure 5.  This 
subroutine is compiled with 
 
ftn -Oaggress -O3 -s default64 –c sgemmnn.f 
 
The SSP code, named DMMNN in this prototype, is 
implemented in assembly language to achieve the best 
possible instruction scheduling for elements of A that are 
expected to be found in the cache. 
 
      subroutine sgemmnn( m, n, k, alpha, a, inra, 
     &                    b, inrb, beta, c, inrc ) 
      integer m, n, k, inra, inrb, inrc 
      real alpha, beta 
      real a(inra,*), b(inrb,*), c(inrc,*) 
      integer i, js, m4 
cdir$ SSP_PRIVATE dmmnn 
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      m4 = (m+3)/4 
      do i = 0, 3 
         js = min( m4, max( m-i*m4, 0 ) ) 
         call dmmnn( js, n, k, alpha, a(1+i*m4,1), 
     &               inra, b, inrb, beta,  
     &               c(1+i*m4,1), inrc ) 
      end do 
      return 
      end 
 
Figure 5:  MSP code for matrix multiply, calling SSP 
subroutine dmmnn 
 
5. Optimization of the row interchanges 
The row exchange is a target for optimization because it 
involves moving data with non-unit stride, all processors 
participate, and it is all overhead – no floating point 
computations are performed.  The sequence of row 
interchanges from the panel factorization is described by an 
index vector IPIV, where IPIV(i) = j indicates that row i was 
exchanged with row j.  The indices are not unique, because 
a row that is exchanged out of the pivot row block early in 
the panel factorization may be copied back into the pivot 
row block in an exchange with a later row.2   The challenge 
is to turn the description of a sequential process – the row 
exchanges of the panel factorization – into a block update 
that can be applied to the distributed matrix as a whole. 
 
We do this by translating the IPIV vector into index vectors 
ISCAT and IGATH, where ISCAT contains the destination 
row indices for the rows of the pivot block row and IGATH 
contains the indices of rows of the global array that are 
gathered into the rows of the pivot block row.  Row indices 
in each of these vectors are unique, so the gather or scatter 
operation can be done as a block. 
 
Since rows of the local array structure are non-unit stride, it 
is more efficient to copy them to a contiguous buffer before 
sending them.  On processors in the pivot block row, the 
ISCAT vector is used to copy any rows to be transferred to a 
remote processor to a send buffer.  On the remote 
processors, the IGATH vector is used to identify local rows 
involved in the row exchange and copy them to a buffer as 
well.  Each processor participating in the row exchange then 
synchronizes with the pivot block row, after which each can 
get their data from the other’s buffer.  A final 

                                                
2 The most extreme example of row exchanges using partial 
pivoting is the matrix 

|  0  1               | 
 |      …             | 
 |             …      | 

|                 0 1 | 
| 1                 0 | 

 
for which IPIV(1) = … = IPIV(N) = N, i.e., every row is 
exchanged with row N. 

synchronization when the transfer is complete is required to 
indicate that the buffers can be re-used. 
 
In the CRAY LINPACK benchmark code, the local data 
copy of selected rows to a contiguous buffer is called 
transposeAItoB, and the corresponding routine to copy from 
columns of the contiguous buffer back to rows of the local 
array structure is called transposeBtoAI.  On the CRAY 
T3E, these operations were optimized using E-registers, like 
other transpose operations [2].  On the CRAY X1, the 
vectorizing compiler handles the indexed transpose without 
any special effort. 
 
6. The virtual processor grid 

One shortcoming of mapping a distributed matrix to a 2-D 
processor grid is the 2-D grid itself.  If the number of 
processors Np is a perfect square, then any operations on a 
block column or block row (such as the panel factorization 
in the LINPACK benchmark) will involve only sqrt(Np) 
processors.  Moreover, not every processor count factors 
neatly into p·q.  For example, early CRAY X1 systems were 
shipped with 32 four-processor nodes, with 31 nodes 
configured for application use.  But the only factorization of 
124 is 4×31 (or 31×4), and 123 = 3×41 and 122 = 2×61 are 
no better.  Rather than leave 3 processors idle and solve the 
system on 121 processors, we conceived of using a 32×31 
virtual processor grid, in which each physical processor 
would handle more than 1 block in the virtual processor 
grid. 
 
More generally, one could solve any 2-D problem using Np 
processors on a p×q grid such that p×q = k×Np, where k = 1, 
p = Np, and lcm(p, Np) = k×Np.  The restriction p = Np is 
necessary to prevent assigning more than one block in a 
column of the virtual processor grid to the same processor, 
and the constraint lcm(p, Np) = k×Np simply guarantees that 
the virtual processor grid is not a multiple of another smaller 
virtual processor grid. Using a virtual processor grid is not 
the same as multithreading, because we create only one 
process per processor, and the blocks of the virtual 
processor grid must sometimes be dealt with in a prescribed 
order, not always from 1 to k. 
 
An example using 6 processors on a 4×3 virtual processor 
grid is shown in Figure 6.  This tiling pattern has two times 
the parallelism of a 2×3 grid for column operations.  The 
only drawback to the virtual processor grid, other than 
algorithmic complexity, is a potentially longer 
synchronization time when one processor must deal with 
more than one of its blocks at a time.  For instance, if 
column 1 and column 2 of the virtual procesor grid in 
Figure 6 exchanged data, then processor 0 would have to 
exchange with 4 using its first block before exchanging with 
2 using its second block.  However, this effect is lessened 
on larger virtual grids, such as a 32×31 grid on 124 
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processors, where the blocks on the same processor are 
farther apart. 

 
 
 
 
 
 
 
 
 
 
Figure 6:  Six processors in a 4×3 virtual processor grid 
 
In the Cray LINPACK benchmark code, the virtual 
processor indexing is handled by adding a 5th dimension to 
the local array structure A, which becomes 
 
 A( nb, nb, ncblks, nrblks, nvpi ) 
 
For some operations, such as the rank-nb update in the 
LINPACK benchmark code, the order of processing the 
distribution blocks is not important, so we can update all the 
blocks with the same virtual processor index together.  In 
other cases, particularly communication operations, each 
processor must process all its blocks in the virtual processor 
grid tile before going on to the next tile.  Furthermore, the 
order of processing the blocks in a tile may change as the 
algorithm progresses, so it is necessary to maintain the 
current starting point istart, and process the block numbered 
1 + mod( istart + i – 1, nvpi ) in a loop from 1 to nvpi.  
 
Figure 7 shows the effect of the virtual processor grid 
algorithm on 124 processors of a CRAY X1.  Both the 4×31 
and 31×4 grids show similar performance, while the 32×31 
virtual processor grid is up to 10% faster.  In the LINPACK 
benchmark, which is so dominated by matrix multiply that 
improvements to other parts of the code are usually in the 
1% range, this degree of improvement is significant. 
 
7. Summary 

In optimizing the LINPACK benchmark for the CRAY X1, 
we have found new avenues for performance improvements 
in the code originally developed for a CRAY T3E.  The 
storage order of the distribution blocks is an often 
overlooked parameter that affects how the data is mapped to 
the memory hierarchy in the main computational kernels.  
By parallelizing these kernels across the SSPs of an MSP, 
we achieved performance of 95% of peak for matrix 
multiplication and over 90% for the LINPACK benchmark 
overall.  To further reduce inefficiencies in the row or 
column operations, which involve only a subset of the 
processors, we introduce the concept of a virtual processor 
grid.  A side benefit of this technique is that one can model 

the solution of a problem on k·Np processors using only Np 
processors if it will fit in memory. 
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Figure 2:  Matrix-multiply C = A*B on the CRAY T3E, highlighting the matrix-vector kernel 

 
 

 

Figure 3:  CRAY X1 multi-streaming processor design 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Matrix-multiply C = A*B on the CRAY X1, highlighting the SSP parallelism and computation of four vectors 
concurrently. 
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Figure 7:  LINPACK Benchmark performance on a virtual processor grid, compared to a conventional processor grid 
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