LINPACK Benchmark Optimizations on a Virtual Processor Grid

Ed Anderson (eanderson@na-net.ornl.gov)
Maynard Brandt (retired)
Chao Yang (cwy@cray.com)

Outline

- Organization of the Cray LINPACK Benchmark code
- Kernel optimizations on the CRAY X1
- The virtual processor grid

The LINPACK benchmark

Solve a linear system

$$
A x=b
$$

using Gaussian elimination with partial pivoting.
The problem size and implementation are not specified.
The algorithm factors $\mathrm{A}=\mathrm{LU}$ and solves

$$
\mathrm{y}=\mathrm{L}^{-1} \mathrm{~b} ; \mathrm{x}=\mathrm{U}^{-1} \mathrm{y}
$$

Performance results are specified in
Gflop/s (billions of floating-point operations per second) or Tflop/s (trillions of floating-point operations per second)

Block LU factorization

Right-looking algorithm:

I. Factor block column into $\mathrm{A}=\mathrm{LU}$
II. Exchange rows and update block row
III. Update the rest of the matrix using matrix multiplication

Optimizing the panel factorization

Sub- blocking or recursion is used within the block column so that more work is done in the optimized MM kernel.

Software choices

HPL (High Performance LINPACK)
http://www.netlib.org/benchmark/hpl

- Block-cyclic distribution
- Column-wise storage of blocks
- MPI communication

Cray's LINPACK Benchmark code

- Block-cyclic distribution
- Row-wise storage of blocks
- MPI or SHMEM communications

2-D block cyclic data distribution

Example on a 2×3 processor grid:

0	2	4	0	2	4	0	2
1	3	5	1	3	5	1	3
0	2	4	0	2	4	0	2
1	3	5	1	3	5	1	3
0	2	4	0	2	4	0	2
1	3	5	1	3	5	1	3
	0	2	4	0	2	4	0

Local view: ScaLAPACK/HPL

Blocks stored by columns, on processor 0:

$\mathrm{A}_{1,1}$	$\mathrm{~A}_{1,4}$	$\mathrm{~A}_{1,7}$
$\mathrm{~A}_{3,1}$	$\mathrm{~A}_{3,4}$	$\mathrm{~A}_{3,7}$
$\mathrm{~A}_{5,1}$	$\mathrm{~A}_{5,4}$	$\mathrm{~A}_{5,7}$
$\mathrm{~A}_{7,1}$	$\mathrm{~A}_{7,4}$	$\mathrm{~A}_{7,7}$

A(mb*nrblks, nb*ncblks)

Advantage: With abstraction of BLAS and LAPACK routines, we can maintain much of the LAPACK design.
Disadvantage: As matrix size gets large, distribution blocks get spread out through memory.

Local view: Cray LBM code

Blocks stored by rows, processor 0:

Advantage: Distribution blocks and block rows are contiguous. Disadvantage: More indexing with the 4-D array.

Main computation kernel

After communication of the column and row blocks, each processor performs a matrix-matrix multiplication of the form:

In ScaLAPACK/HPL, one call to SGEMM is required for this operation.

Optimizing data layout for SGEMM

With row-wise storage of blocks, one call to SGEMM is needed to update each local block row.

(all the same block)

11

Internals of SGEMM on T3E

Basic operation: nb-by-nb matrix times nb-by-n matrix

A

B
n

C

Innermost kernel: $12 \times n b$ matrix-vector multiply, 12-element result The nb-by-nb block of A is used repeatedly and will reside in cache. The columns of B are streams (if $L D B=n b, B$ is one long stream). The result vector is held in registers until combined into C.

Transition of SGEMM: T3E \rightarrow X1

T3E: Result vector was 12 elements long
X1: Result vector can be VL elements long (to 64)

Transition of SGEMM: T3E \rightarrow X1

Internals of SGEMM on X1

Basic operation: nb-by-nb matrix times nb-by-n matrix

nb	
	SSP0
nb	SSP1
	SSP2
	SSP3

A

B
n

C

The nb-by-nb block of A is used repeatedly and will reside in cache. B is read 4 columns at a time and is shared by the 4 SSPs. The result vector is held in registers until combined into C .

Prototype matrix multiply code

```
    subroutine sgemmnn( m, n, k, alpha, a, inra, b, inrb,
    &
                            beta, c, inrc )
    integer m, n, k, inra, inrb, inrc
    real alpha, beta, a(inra,*), b(inrb,*), c(inrc,*)
    integer i, js, m4
cdir$ SSP_PRIVATE dmmnn
    m4 = (m+3)/4
    do i = 0, 3
        js = min( m4, max( m-i*m4, 0 ) )
        call dmmnn( js, n, k, alpha, a(1+i*m4,1), inra,
&
                    b, inrb, beta, c(1+i*m4,1), inrc )
end do
return
end
```

Compile with:
ftn -Oaggress -03 -s default64 -c sgemmnn.f

Optimizing the row exchanges

A row exchange is performed at each step of the block column factorization to put the largest element (in absolute value) on the diagonal. The vector IPIV records the exchanges.

Example:

$$
\begin{aligned}
& \operatorname{IPIV}(1)=20 \\
& \operatorname{IPIV}(2)=6 \\
& \operatorname{IPIV}(3)=9 \\
& \operatorname{IPIV}(4)=31 \\
& \operatorname{IPIV}(5)=5 \\
& \operatorname{IPIV}(6)=22 \\
& \operatorname{IPIV}(7)=20 \\
& \operatorname{IPIV}(8)=20
\end{aligned}
$$

Gather/scatter indices

We can avoid synchronizing after every exchange by translating IPIV into gather and scatter permutation vectors.

scatter	gather
$1 \rightarrow 7$	$1 \leftarrow 20$
$2 \rightarrow 22$	$2 \leftarrow 6$
$3 \rightarrow 9$	$3 \leftarrow 9$
$4 \rightarrow 31$	$4 \leftarrow 31$
$5 \rightarrow 5$	$5 \leftarrow 5$
$6 \rightarrow 2$	$6 \leftarrow 22$
$7 \rightarrow 8$	$7 \leftarrow 1$
$8 \rightarrow 20$	$8 \leftarrow 7$

Optimizing the communication

To optimize the communication, rows to be exchanged are first copied locally into a contiguous buffer.

When a $p \times q$ grid isn't enough

Shortcomings of existing algorithm:

- Many processors are idle during column factorization.
- Not every processor count factors neatly into $N_{p}=p \times q$.

Example:

$$
\begin{aligned}
& 124=4 \times 31 \\
& 123=3 \times 41 \\
& 122=2 \times 61 \\
& 121=11 \times 11
\end{aligned}
$$

- On some systems it is better to leave one or two processors idle ($\mathrm{N}_{\mathrm{p}}-1$ may not factor neatly).

The Virtual Processor Grid

Generalize the 2-D grid factorization to $p \times q=k \times N_{p}$ where $k \geq 1, p \leq N_{p}$, and $\operatorname{lcm}\left(p, N_{p}\right)=k \times N_{p}$.
Example: 6 processors in a 4×3 virtual grid
$\left.\begin{array}{|l|l|l|}\hline 0 & 4 & 2 \\ \hline 1 & 5 & 3 \\ \hline 2 & 0 & 4 \\ \hline 3 & 1 & 5 \\ \hline\end{array}\right\}$

This becomes the tiling pattern for the distributed 2-D matrix

Data structure for VPG

Recall the 4-D array used for row-wise storage of blocks: A(mb, nb, ncblks, nrblks)

Now add another dimension for the virtual processor index:
A (mb, nb, ncblks, nrblks, nvpi)

Maintains contiguousness of distribution blocks and row blocks.
Need to add a loop over the virtual processor indices.
No extra storage except for some extra buffers for each virtual processor.

Coding issues for VPG

Loop doesn't always go from 1 to nvpi.
Example: Send second column of following matrix across rows.

0	4	2	0	4	2
1	5	3	1	5	3
2	0	4	2	0	4
3	1	5	3	1	5
0	4	2	0	4	2
1	5	3	1	5	3

Send is initiated with virtual processor index 1 on $\{4,5\}$, with v.p. index 2 on $\{0,1\}$.

Recv is initiated with virtual processor index 2 on $\{2,3,4,5\}$ and with v.p. index 1 on $\{0,1\}$

do $\mathrm{i}=0$, nvpi- 1
\{work on block numbered
$1+\bmod ($ start-1+i, nvpi)\}
end do

27

Summary

- Storage order of distribution blocks was optimized for the cache.
- Leading dimension was padded from 256 to 260 to optimize the matrix-multiply kernel.
- Main computational kernel uses SSP parallelism.
- Communication was optimized using SHMEM.
- No barriers! Communication was extensively overlapped with computation.
- Virtual processor grid improves parallelism of column and row operations.

