
CUG 2004 Proceedings 1

Effect of Tripling the Memory Bandwidth on the CRAY MTA-2

Wendell Anderson (Naval Research Laboratory) and
Marco Lanzagorta (Scientific and Engineering Solutions)

ABSTRACT: In July 2002, the Naval Research Laboratory installed and began operating a
40-processor Cray Multi-Threaded Architecture (MTA-2) computer.  In September 2003, the
basic clock rate was increased from 200 MHz to 220 MHz and a top plane was added to the
MTA-2 increasing the available memory bandwidth from 11 Gigabytes per second to almost
32 Gigabytes per second.   In order to evaluate the actual performance for scientific
simulations obtained on the upgraded MTA-2, two of the acceptance codes (Flux and Alla)
and two production codes (Lanczos and Causal) were run on a range of processors and an
analysis of the running times was performed.  No changes were needed to any of these codes
to see improvements in the performance of the computational intensive portion of the codes.
The codes ran at least 1.1 times faster with some codes running 2.5 times faster.   

1.  Introduction
In July 2002, the Naval Research Laboratory installed

and began operation of a 40-processor 200 MHz Cray
Multi-Threaded Architecture (MTA-2) computer [1].  The
MTA-2 has a flat, shared memory with uniform access
times from any processor to any memory location. Each
processor has 128 RISC-like hardware threads with each
thread containing its own instruction counter, status words,
and registers and can initiate up to three floating point
instructions per cycle.  On each clock cycle, the processor
can activate a different hardware stream. Each thread can
have up to eight concurrent memory references. A processor
along with an I/O processor and memory units with 4
Gbytes of SDRAM is contained on a system board. Each
board is connected to the system interconnection via four
routing nodes, allowing data transfers to and from the board
at full processor bandwidth. Since the MTA-2 supports 64-
bit data, addresses, and instructions, each processor can
ideally move an 8-byte word on each cycle; hence, the
MTA-2 had an aggregate potential of requesting 64
Gigabytes of data each second. However the MTA-2's
internal network was only capable of supporting 35-45% of
this data rate.

  In order to better match the aggregate rate that the
processors could request data and the bandwidth of the
network, in September 2003 Cray installed a top plane for
each of the processors to increase the network bandwidth to
handle the data requests from the processors. At the same
time Cray increased the clock rate of the machine 10% to
220 MHz, bringing the potential data rate to 70.4 Gigabytes
per second.

The MTA-2 was designed to overcome the challenges
presented by the increasing ratio of processor clock rate to
memory access speed. Processor speed has been following
Moore's law (a doubling in speed every 18 months) while
memory speeds have been increasing at closer to 10%. The
time to access a single word from memory has grown to as
much as tens of cycles The standard solution to this growth
differential has been the development of high speed caches
(often at several levels) where data may be temporarily
stored.  This "solution" relies on using data retrieved from
memory to cache many times without having to access it
again from main memory and updating data several times to
cache before storing it to main memory.

Such solutions do not work well when there is little
reusability of the data as in sparse problems or where the
data does not fit in cache.  The designers of the MTA-2
envisioned a different solution to this mismatch.  By
building hardware that supported multi-thread execution and
the context switching from one thread to another within a
single cycle, the memory access delay could be hidden by
running enough threads simultaneously on each processor
(typically 30-60 for memory intensive codes). In this way, at
least one thread would be ready to execute on any given
cycle.

2. Methodology

   In order to evaluate the effect of the increased clock
speed and the addition of the top plane, four codes (Flux and
Alla from the original benchmark suite; Lanczos and Causal
from the set of production codes running on the MTA-2)
were analyzed using three different methods: measurements
of wall clock time, measurements of system performance
while the codes were actually running, and examinations of



CUG 2004 Proceedings 2

the parallelization and loop blocks generated by the
compiler.

   For each of the codes, a typical set of parameters was
chosen and the wall clock time of the program was
measured, using the UNIX date command run from the
command line, for the program executing on a range from
one processor to all forty.  In addition computationally
intensive portions of the program were timed using the
Fortran 90 system_clock intrinsic.

While each of the codes was running on all forty of the
MTA-2 processors, mtatop (Cray's version of the UNIX top
command) and dashboard (a graphical version of mtatop
displaying more information) were used to monitor system
activity. From the mtatop output, the short-term average of
CPU utilization, memory references per seconds, and
floating point operations per second were recorded. The
dashboard graphical display was also used to monitor the
same three facets of program execution as well as the thread
utilization percentage, traps per second, and the average
ready streams per CPU.

  Finally for the two production codes (Flux and Causal)
where the vast majority of time is spent in a short section of
the code the MTA-2 code analyzer canal was used to
examine the parallelization of the code and the number of
instructions, floating point operations, and memory accesses
of the code.

3. Applications

3.1 Flux

Flux calculates the temperature dependent electronic
excitation spectra and super conducting densities [2] of
materials by iteratively solving over a four dimensional grid
the non-linear equations of propagator functional theory,
Dyson's equation and a self-iteration equation. Fast Fourier
Transforms  (FFT's) are used to transform between the
position-imaginary time and crystal momentum-imaginary
frequency spaces. This requires the addition of a frequency
conditioning method to remove unphysical artifacts of the
FFT procedure and to ensure that the solution is self-
consistent.

Most of the time spent in solving the material problem
is spent in updating the equations at each grid points and
performing FFT's over each of the axis of the grid.  Since
the values at each grid point are a function of the grid point
for the previous iteration and none of the current grid points,
the updates of the grid point values is accomplished by an
embarrassingly parallel set of quadruple nested door loops.
The update of the values at the grid points required about
75% of the calculation time with most of the rest of the time
spent in the FFT routines.

Table 1 contains the timings of a flux calculation over a
128x128x1x512 grid for both the old (200 MHz) and new
(220 MHz) MTA-2.

Processors Old Time
(secs)

New Time
(secs)

Speedup

1 6103 6478 0.94
2 3167 3298 0.96
4 1708 1724 0.99
8 915 896 1.02

16 577 465 1.06
24 372 294 1.29
32 311 229 1.36
40 286 191 1.50

Table 1:  Flux Iteration times for MTA-2

Comparing the two time columns, the addition of the
top plane provided a significant reduction in the time
required to calculate the solution of the flux equations when
the program was run on multiple processors with the total
running time 1.5 times faster for 40 processors.  While the
code only scaled by a factor of 21 without the top plane, the
scaling was 34 with the top plane.  Scaling of the code is
limited by a significant amount of formatted I/O after the
convergence of the flux algorithm.
3.2 Alla

Alla is a fluid dynamics code for reactive Navier-Stokes
and Euler simulations that utilizes a high-quality Godunov-
type, finite-volume, explicit integration algorithm that is
second-order accurate in space and time. The code uses an
NRL-developed Fully Threaded Tree (FTT)-based local
mesh refinement for obtaining highly resolved solutions [3].
FTT arranges cells in layers of refined meshes.  Logically,
the cells in FTT are organized as a standard oct-tree with
pointers going to children, neighbors and parents. The
thread pointers in FTT are inverted and directed from
children to parent’s neighbors allowing creation and
destruction of children without affecting neighbors. All FTT
operations can be performed in parallel. Most of the time in
the calculation portion of the code is spent in transversing
the FTT tree and updating the simulated values at each grid
point.

After every n steps, Alla writes a binary restart file and
formatted ASCII data files that will later be used for post
processing visualization. Since the formatting of the ASCII
data and corresponding I/O is a significant portion of the
running time on the MTA-2, calculations and I/O are
overlapped requiring extra copies of the data to be saved
until the data has been stored on disk. Once enough
processors have been applied to the problem so that the
calculations for n steps can be performed faster than data
can be written to disk, the gain from extra resources is
minimal and may even degrade as old data is accumulated.



CUG 2004 Proceedings 3

Times for running Alla on a benchmark case on the
old and new MTA-2 are given in Table 2.

Processors Old Time
(secs)

New Time
(secs)

Speed Up

1 12910 10368 1.24
2 6342 5257 1.22
4 3126 2561 1.33
8 1711 1478 1.33

12 1346 1062 1.27
16 954 820 1.20
20 764 706 1.21
24 633 621 1.21
32 521 519 1.25
40 415 478 1.24

Table 2:  Alla Iteration Times for MTA-2

Measurements from mtatop indicated that the program
achieved a rate of 3.4G memory references per second on
the upgraded machine or about 25% more bandwidth than
the old MTA-2. This is consistent with the 20-33%
improvement in the time to calculate 1000 iterations seen in
Alla is it was run on a range from one to forty processors.

3.3 Lanczos

The Lanczos code grew out of a study of the low
temperature thermodynamic properties on many body
quantum systems [4]. Such studies involve three steps: the
generation of the non-zero entries of very large sparse
symmetric matrices (millions of rows and columns), the
generation using a Lanczos method [5] of the non-zero
entries of a symmetric tri-diagonal matrix of a much smaller
order (thousands of rows and columns) whose eigenvalues
approximate the largest and smallest eigenvalues of the
sparse matrix, and the determination of the eigenvalues of
the tridiagonal matrix.  The first and last of these steps may
be easily done on a PC, but the middle set of calculations
require a high performance computer to perform the
calculations in a reasonable length of time.  Previously these
calculations were performed using a C++/MPI program.
For the MTA-2 a simple shared memory Fortran 90 program
was written.

Table 3 shows the wall clock times using the C++/MPI
program (top part of table) and the new F90 code on shared
memory machines (bottom part).  The X1 processor count is
based on SSP’s and the entry for 32P is N/A as the shared
memory code runs only on 1 node (16 SSP’s) of the X1. The
matrix used in the calculation was 10 million by 10 million
with an average of 33 elements per row and 1000 lanczos
coefficient pairs were generated.

Platform Speed
MHz

16P
mins

32P
mins

Speed
Up

SGI Origin 400 158 161 0.99
SGI Altix 1300 113 117 0.96
Cray X1 800 212 112 1.90
IBM P3 375 143 112 1.28
Intel Pentium III 933 103 74 1.39
COMPAQ ES45 1000 90 64 1.42
Intel Xeon 3060 69 49 1.40

SGI Altix 1300 110 148 0.75
SGI Origin 500 90 128 0.70
Cray X1 833 28 N/A
Cray MTA-2 (old) 200 28 17 1.73
Cray MTA-2 (new)  220 23 11 2.06
Table 3: Wall Clock Times for 1000 Lanczcos coefficients

Even thought the MTA-2 had the lowest clock rate, the
coefficients were generated 4.5 times faster than the next
best system and an order of magnitude faster than most of
the systems.  For the C++/MPI programs, while the system
with the fastest clock produced the fastest result, little
correlation was found between processor speed and wall
clock time.

 The code for the loop to calculate a diagonal (aval) and
an off-diagonal (bval) entry of the tri-diagonal matrix from
the sparse matrix R stored in a compressed row format
(CRS) is:

       Do index = 1, Imax
        Y(index) = 0
        Do index2 = I(index)+1, I(index+1)
         Y(index) = Y(index)+R(index2)*Vvec(J(index2))
        end do
       end do
       aval(iteration) = DOT_PRODUCT(Y,Vvec)
       Uvec=Y+aval(iteration)*Vvec+Uvec
       bval(iteration)=sqrt(DOT_PRODUCT(Uvec,Uvec))
       Do index = 1, Imax
        Tmp = Vvec(index)
        Vvec(index)=Uvec(index)/bval(iteration)
        Uvec(index)=-Tmp*bval(iteration)
       end do

Approximately 90% of the calculation time of this code
is spent in the first six lines where the product of the sparse
matrix and a dense vector v is performed.  The code is the
"same” for both real and complex matrices R with the only
difference being whether the vectors and matrices are
declared real or complex.  In order to gain a feeling for the
execution time of the first do loops on the MTA-2, canal
was used to analyze the double do loop in the first six lines
of the above code with most of the calculations performed
in line four.



CUG 2004 Proceedings 4

For the real case the execution of the one line of code in
the inner loop requires three instructions, three memory
references (one to retrieve the vector index, one to retrieve
the sparse matrix element, and one to retrieve the vector
element) and two floating point operations. For the MTA-2
this 3:3:2 ratio of instructions to memory operations to
floating point operations indicates that the limiting factor on
the program execution will be the ability of the MTA-2 to
retrieve data from memory.  Thus the reduced bandwidth of
the MTA-2 without the top plane was expected to have a
significant impact on the execution of the Lanczos program.
Since the code has two floating point operations on every
three cycles, and the hardware will support nine floating
point instructions every three cycles, the sustained flops for
this code is only 22% of peak or 5.8 Gigaflops.

A similar canal analysis for the case for a complex
matrix leads to seven instructions, five memory references
(one to retrieve the vector index, two to retrieve the complex
matrix entry, and two to retrieve the complex vector entry)
and eight floating point operations (six for the complex
multiply and two for the complex add). Now the ratio of
instructions to memory references to floating point
operations is 7:5:8.  Without the top plane the code is
limited by the aggregate memory bandwidth of the MTA-2
internal network; with the top plane the code is limited by
the ability of the MTA-2 to execute instructions.  In seven
cycles the MTA will be able to execute only eight floating
point operations versus the twenty-one that the hardware
will support.  Thus the peak gigaflop ratio for this code will
be less than 38% of peak or 10.0 gigaflops.

Measurements were also made for both the old and new
MTA-2 of the program running on a real matrix and a
complex matrix over a range of runs using one to forty
processors.  The matrices had 10 million rows and columns
and on the average; each row had thirty-three non-zero
elements. Table 4 contains the times of the loop for a real
matrix and Table 5 for a complex matrix.

Processors Old Time
(secs)

New Time
(secs)

Speedup

1 9.76 8.12 1.20
2 4.86 4.03 1.20
4 2.43 2.01 1.21
8 1.29 1.01 1.28

12 0.94 0.67 1.40
16 0.76 0.51 1.49
20 0.65 0.40 1.63
24 0.61 0.34 1.79
28 0.57 0.29 1.97
32 0.55 0.26 2.12
36 0.53 0.23 2.30
40 0.53 0.21 2.52

Table 4: Time per Iteration for Real Matrix

Processors Old Time
(secs)

New Time
(secs)

Speedup

1 24.97 20.60 1.21
2 13.00 10.54 1.23
4 6.49 5.16 1.26
8 3.22 2.60 1.24

12 2.17 1.75 1.24
16 1.65 1.36 1.21
20 1.35 1.05 1.29
24 1.20 0.88 1.36
28 1.06 0.75 1.41
32 0.98 0.66 1.48
36 0.94 0.59 1.61
40 0.91 0.54 1.69

Table 5: Time per Iteration for Complex Matrix

From Tables 4 and 5, as more processors are applied to
the problem, a nearly ideal scaling is seen for the real and
complex case for the MTA-2 with the top plane.  Previously
the MTA-2 exhibited this type of scaling only to about 20
processors as the insufficient aggregate bandwidth of the
network limited the total execution time of the code
significantly.  With the addition of the top plane and 10%
clock speed increase running time of the code improved by
a factor of 2.5 for the real case and 1.65 for the complex
case.  The better improvement for the real case was due to
the real case being able to take full advantage of the
increased bandwidth, while the limiting factor for the
complex case was the rate at which instructions could be
executed.
3.4 Causal

Causal models the propagation of an acoustic wave in
water by using a fourth order in time and space finite
difference time domain representation of the linear wave
equation that has been modified by the addition of the
derivative of the convolution between an operator and the
acoustic pressure to take into account a dispersive medium
[6-8]. This discretization of the wave equation and the
addition of the derivative leads to a set of nested do loops of
the form:.

do j=1,nz-1
 do i=1,nx-1
  fsq=cv(i,j)*dt*dt
  cw=sqrt(cv(i,j))
  grad=fsq*(-60.0*u(i,j,i1)+16.0*(u(i+1,j,i1)+u(i,j+1,i1)

  +u(i-1,j,i1)+u(i,j-1,i1))-(u(i+2,j,i1)+u(i,j+2,i1)
  +u(i-2,j,i1)+u(i,j-2,i1)))/(12.0*dx*dz)
  +fsq*fsq*(20.0*u(i,j,i1)-8.0*(u(i+1,j,i1)+u(i-1,j,i1)
  +u(i,j+1,i1)+u(i,j-1,i1))+2.0*(u(i+1,j+1,i1)
  +u(i-1,j+1,i1)+u(i+1,j-1,i1)+u(i-1,j-1,i1))
  +u(i+2,j,i1)+u(i-2,j,i1)+u(i,j+2,i1)+u(i,j-2,i1))
  /(12.0*dx*dx*dz*dz)

   u(i,j,i0)=2.0*u(i,j,i1)-u(i,j,i2)+grad
   sump1=0.00
   do ijk=1,ntau



CUG 2004 Proceedings 5

     sump1=sump1+cpo0(ijk,i,j)*ucon(indx+ijk-1,i,j)
   end do
   cp(i,j,ic1)=sump1*dt
   deriv=2.0*fsq*(25.0*cp(i,j,ic1)+48.0*cp(i,j,ic2)

   +36.0*cpi,j,ic3)-16.0*cp(i,j,ic4)+
   +3.0*cp(i,j,ic5))/(12.0*cw*dt)

   u(i,j,i0)=u(i,j,i0)+deriv
   ucon(nlocm1,i,j)=u(i,j,i0)
  enddo
enddo

Canal was used to analyze the body of the nested loops.
Most of the execution time was contained in the three lines
that are required to update u(i,j,i0) by  grad, the loop to
calculate sump1, and the three lines to update u(i,j,i0) by
deriv.  The results are contained in Table 6.

Instructions Memory
ops

Floating ops

grad 44 33 40
sump1 2 2 2
deriv 20 10 24

Table 6: Causal Operation Counts

   A typical set of parameters for causal would be nx=2400,
ny=2400, and ntau =1024.  The updates of u(i,j,i0) require
only 64 instructions while the do loop to calculate the value
of cp requires 2408. Thus the execution time of the program
is dominated by the ijk loop with its two instructions, two
memory operations, and two floating point operations.
While the code was not run on the old MTA-2, this loop
would have been hampered by the limited aggregate
bandwidth of the old MTA-2. Measurements using mtatop
of the memory operations on the new MTA-2 were 7.5 Gig
memory operations per second.

Table 7 presents the measurements of causal running on a
range of one to forty processors.  The code scales well
across the range of processors.

Processors Time (secs) Scaling
1 6812
2 3502 1.94
4 1747 3.89
8 893 7.62

12 611 11.14
16 469 14.52
20 382 17.83
24 325 20.96
32 255 26.71
40 217 31.39

Table 7: Causal Wall Clock Times

A second version of causal (referred to as causalrd2)
was developed for the case where most of the medium is
non-dispersive for the source of interest. In this case, for

most of the points in the grid, of the variables in table 6 only
the code for the calculation of grad will be executed.  The
correction for dispersion (the calculation of sump1 and
deriv) will be performed on a only a relatively small
percentage of the grid points. A typical problem for this case
would be nx=6000 and nz=6000 with the dispersion
calculations of the derivative over only 180,000 points. For
these parameters each pass through the nested do loop will
require 1600 million instructions compared to the 360
million for the code accounting for dispersion.  Thus the
running time of the code will be dominated by the
calculation of grads.

This shift in where the bulk of the calculations are
performed considerably complicates the behavior of the
program.  First, a load balancing problem arises as the
amount of calculations for a particular i,j pair is no longer
the same, but varies . The ratio of instructions to memory
operations is closer to 1.3 than to 1.  Also the number of
memory references in calculating grad is nearly twice as
many as one would expect from counting the number using
the source code as some of the variables are reloaded from
memory a second time. Thus, the code that is generated by
the compiler is less efficient than the lanczos and causal
codes. Future work will be devoted to improving the
causalrd2 code. Timings for 5000 time steps with nx=6000
and nz=6000 are given in Table 8.

Processors  Time (secs) Scaling
1 60787
4 15264 3.78
8 7704 7.89

12 5162 11.78
16 3926 15.48
20 3234 18.79
24 2788 21.80
32 2179 27.89
40 2030 29.94

Table 8: Causalrd2 Wall Clock Times

4. Conclusions
In order to obtain an overall idea of the performance of

the codes after the addition of the top plane and the 10%
increase in clock rate, mtatop and dashboard were used to
record the cpu utilization, memory references per second,
floating point operations per second, and average number of
ready streams per processor for each of the codes while
running on all forty processors.  Table 9 summarizes the
results of the codes running on all forty processors.

Without the top plane, the 200 MHz MTA-2 was only
able to achieve a maximum memory reference rate of 2.7
Gigawords per second.  Increasing the clock rate by 10% to
220 MHZ would have increased this to only 3.0 Gigawords.
All of the programs ran with peak memory reference rates
exceeding this.  Overall performance of these codes



CUG 2004 Proceedings 6

improved anywhere from a factor of 1.13 to 2.5 with the
addition of the top plane.

% CPU
Utilization

GMem Gigaflops Ready
Streams

Max 100 8.8 26.4 100
Flux 82 4.5 5.5 20
Alla 80 3.4 4.6 16
Lanczos
(real) 94 7.5 4.5 26
Lanczos
(complex) 80 5.1 6.8 5
Causal 96 7.5 6.9 28
Causalrd2 85 3.6 3.0 11

Table 9 Mtatop Measurements on Running Codes

These results provide insights as to how the MTA-2
compares with other HPC resources. Programs that perform
well on the MTA-2 as compared to other HPC machines are
those that require a high bandwidth to memory – i. e. those
with little data reusability.  When a code has such behavior
the MTA-2 will not only show a high memory op count but
also a high CPU utilization  (as it requires an instruction to
read from or write to memory) and the average number of
ready streams count per processor will be greater than one
(when there is no instruction ready to execute no useful
work can be done).   Codes that show high utilization and
low memory operations are limited by instruction execution
times and are better suited to machines that have high clock
rates.  Programs that have a small  (< 1) number of ready
streams do not have sufficient parallelism to run efficiently
on the MTA-2, (on forty processors, a degree of parallelism
of at least 1200 is generally required) and would probably
be better suited on HPC machines with tens of processors.

Acknowledgments
The authors are deeply indebted to the Cray staff in

Seattle, Washington especially Preston Briggs, and Jace
Mogill, for their support and willingness to answer
questions.  Flux was developed by Dr. Daryl Hess, Alla by
Dr. Alexei Kholkhov, Lanczos by Dr Steve Hellberg, and
Causal by Dr. Guy Norton, all while they were at the Naval
Research Laboratory. The MPI code version of Lanczos was
developed under the High Performance Computer
Modernization Program Office’s (HPCMPO) Common
High Performance Computing Software Support Initiative
(CHSSI) and was run at the ARL and ASC MSRC centers.
of the HPCMPO. Computations were performed on the
MTA-2 provided under the auspices of the DOD HPCMPO
and located at the Naval Research Laboratory in
Washington, D. C.

About the Authors
Wendell Anderson is a mathematician and the head

of the Research Computers Section of the Center of
Computational Science at the Naval Research Laboratory.
He can be reached at Naval Research Laboratory, Code
5593, 4555 Overlook Avenue Washington, D. C. 20375 or
E-mail Wendell.Anderson@nrl.navy.mil. Marco Lanzagorta
is a physicist for Scientific & Engineering Solutions. His
interests include High Performance Computing, Quantum
Computing, and Data Visualization. He can be reached at
Naval Research Laboratory, Code 5593, 4555 Overlook
Avenue Washington, D.C. 20375 or E-mail:
Marco.Lanzagorta@nrl.navy.mil

References

 1) Anderson, Osburn and Rosenberg, “NRL Report on
its Cray MTA-2 (Multi-Threaded Architecture)
Computer”, White paper to HPCMPO, April 2003.

 2) Diesz, Hess, and Serene, “Phase Diagram for the
attractive Hubbard Model in two dimensions in a
conserving approximation”, Physical Review B 66
(2002).

 3 )  Khokhlov “Fully Threaded Tree Algorithms for
Adaptive Mesh Fluid Dynamics Simulations” , J .
Computer. Phys., 143, 519 (1998).

 4)  Anderson, Lanzagorta, and Hellberg, “Analyzing
Quantum Systems Using the Cray MTA-2 ” ,
Proceedings of the Cray Users Group, Columbus Ohio,
May, 2003.

 5) Cullum and Willoughby, Lanczos Algorithms for
Large Symmetric Eigenvalue Computations,
Birkhauser, Boston, 1985.

 6 )  Blackstock, “Generalized Burgers equation for
plane waves”, J. Acoustic. Soc. Am. 77, 2050, 1985

 7)  Szabo, “Time Domain wave equations for lossy
media obeying a frequency power law”, J. Acoust. Soc.
Am. 96, 491, 1994

 8)  Norton and Novarini. “Including dispersion and
attenuation directly in the time domain for wave
propagation in isotropic media”, J. Acoust. Soc. Am.
113, 3024 (2003)


