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ABSTRACT:  
The sPPM benchmark code solves a three dimensional gas dynamics problem on a uniform 
Cartesian mesh using a simplified version of the PPM (Piecewise Parabolic Method) code. It 
utilizes domain decomposition with message passing for distributed parallelism and may also 
simultaneously exploit threading for multiprocessing shared memory parallelism. This talk will 
demonstrate how sPPM was ported and optimized on the Cray X1 and achieved 3.7 Gflops on a 
single MSP and 112 Gflops on 32 MSPs. We'll discuss the relative performance advantages 
involved in running sPPM and similar codes in possible combinations of the SSP, MSP, OpenMP 
and or MPI programming models, and make comparisons of its performance on the Cray X1 with 
that of the Itanium2 Linux cluster located at NCSA. 
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Introduction 
For the past several months Cray has been working with the NCSA applications group on porting and 
optimizing their benchmarks for the Cray X1. Since the architecture is a multi-streaming vector 
machine, some codes ported very well and others did not. This paper will cover the details of one NCSA 
benchmark, namely sPPM, that ported very well to the Cray X1.  

The paper will start with a short history about sPPM and its relationship to the hydrodynamics code 
PPM. Next, since the Cray compiler offers many different programming models, which can be mapped 
differently to the hardware, the paper will continue with a discussion of these models in detail and 
explain the benefits of using one model over another. That section will help to illustrate which 
programming model works best for sPPM. Finally the paper will wrap up with some performance results 
on the Cray X1, showing how the combination of MPI, streaming, and vectorization yields the best 
performance. This last section will also compare these Cray X1 results with the Itanium2 Linux cluster 
located at NCSA.  

sPPM Numerics and History 



The benchmark sPPM is a simplified version of hydrodynamics code PPM (the Piecewise Parabolic 
Method) which was developed by Woodward and Colella in the 1980s at Lawrence Livermore National 
Laboratory. The particular version of PPM that sPPM is derived from solves the nonlinear one 
dimensional Riemann shock interface problem at each grid cell in Lagrangian coordinates, remapping 
the solution to the source Cartesian mesh. Strong shocks and discontinuities are preserved by PPM with 
judicious application of shock steepening, contact discontinuity detection, and the namesake 4th-order 
accurate interpolation method. Numerical noise is reduced by an addition of an estimated diffusion 
velocity, essentially a parameterized fluid viscosity. The character of PPM is incorporated in sPPM, but 
complicated interpolation and diffusion algorithms are replaced with basic equivalents.  

The sPPM numeric kernel updates a one dimensional strip of zones, resulting in a high level of data 
locality and reuse which maximizes the performance of register and cache memory. The kernel is 
supplied with strips of zones which include boundary or adjacent domain information in "halo" zones. 
During each strip update, halo zones are gradually "consumed" by the series of decreasing extent loops. 
For sPPM the boundary halo width is 5 zones on each end of the current sweep direction, and 2 zones on 
each of the transverse sweep direction. The vectorized sPPM kernel is very regular, requiring 674 
floating point operations per grid cell update (counted by the Cray X1 hardware performance counter). 
The fraction of computational work performed on non-halo zones for a strip of length n is approximately 
1/(1+5/n), which for a domain size as small as 16 results in a "real update" efficiency of 76%. A more 
typical strip size of 128 zones is over 96% efficient in this regard.  

The code is generalized in three dimensions by directional splitting, applying the one dimensional kernel 
in each mesh direction in succession. Shared memory OpenMP can be used to update the independent 
blocks or "pencils" of the one dimension strips. This organization again localizes memory references 
and provides an efficient method of transposing to and from strip order. Throughout the code, memory 
copies are done infrequently. Extending parallelism further, sPPM can use a rectangular domain 
decomposition in which participating processors exchange updated boundary information between 
directional sweeps. This communication is done with simple MPI message passing. This makes good 
use of high bandwidth interconnects and is relatively latency tolerant because there are so few messages. 
Since sPPM was conceived as a simple benchmark code, it does not attempt to overlap communication, 
computation nor I/O. The code also makes no attempt to load-balance across processors, although the 
more modern implementations of PPM does all of these.  

Programming Models 
The Cray X1 programming environment is versatile because it contains so many different programming 
models. The programmers can use vector processing and multi-streaming at the lowest level, along with 
the application program interfaces (API) for: multi-threaded, shared memory parallelism (OpenMP), 
message passing interface (MPI), shared memory access library (SHMEM), Co-Array FORTRAN 
(CAF), and Unified Parallel C (UPC). This rich programming environment is layered on top of a mix of 
hardware, single streaming vector processors (SSP), multi streaming vector processors (MSP), tightly 
coupled shared memory nodes, all connected in a low latency, high bandwidth hypercube.  

To illustrate these programming models, consider the following four nested loop structures. The loop 
marks to the left of the code are similar to those outputted in the listing file by the compiler when the -
rm option is used. The letter P indicates that the loop was parallelized, usually by supplying the OpenMP 
directive C$OMP PARALLEL DO, and compiling with the -O task1 compiler option. The letter M indicates 
that the loop was streamed either automatically by the compiler or with the help of the Cray Streaming 
Directive (CSD), !csd$ PARALLEL DO. Lastly the letter V indicates the loop was vectorized, again either 
automatically or with the help of a compiler directive. If a loop is not parallelized, streamed, nor 



vectorized the compiler puts the numerical number associated with the level of nesting of that loop, 1 
being the innermost loop and counts outward from there.  

        Example 1  (MSP/OMP)                  Example 2  (MSP/OMP) 
     P----<   do k=1, num_k              P----<   do k=1, num_k 
     PM-----<   do j=1, num_j            P2-----<   do j=1, num_j 
     PMV------<   do i=1, num_i          P2MV-----<   do i=1, num_i 
     PMV             ... work ...        P2MV            ... work ... 
     PMV------>   end do                 P2MV----->   end do 
     PM----->   end do                   P2----->   end do 
     P---->    end do                    P---->    end do 
 
 
        Example 3  (SSP/OMP)                  Example 4  (MSP) 
     P----<   do k=1, num_k              M----<   do k=1, num_k 
     P2-----<   do j=1, num_j            M2-----<   do j=1, num_j 
     P2V------<   do i=1, num_i          M2V------<   do i=1, num_i 
     P2V             ... work ...        M2V             ... work ... 
     P2V------>   end do                 M2V------>   end do 
     P2----->   end do                   M2----->   end do 
     P---->    end do                    M---->    end do 

Obviously the performance of the different programming models will depend greatly on the limits of the 
loops, num_i, num_j, num_k. The first example above has each loop distributed with a combination of 
vectroization, streaming, and threading. The innermost loop is vectorized on the pipes within the SSP, 
the middle loop is streamed within the MSP across the four SSPs, and the outer most loop is threaded 
across the four MSPs with in the shared memory node. As long as the inner loop has a trip count greater 
then the vector length (64), this code should perform well. There are only four SSPs per MSP and only 
four MSPs per node, so these trip counts only need to be greater then four for good performance. For 
good performance the programmer also needs to consider the overhead associated with parallelization. 
Since streaming occurs at the lowest level (instruction level) it has the fastest context switching time and 
lowest parallel overhead as compared to threading with OpenMP, so its favorable to stream instead of 
threading from an overhead point of view.  

Example 2 illustrates what might happen if the innermost loop is contained within a subroutine by itself. 
By default the compiler will not look at the calling subroutine and will only have the option of streaming 
and vectorizing this single loop. This is fine if the loop i has a very long trip count. Again the loop is 
threaded on the outer most loop using OpenMP, and the second loop is simply carried along in the 
parallization.  

Example 3 illustrates an interesting programming model in that the streaming level has been removed 
altogether. In this model the vectors are directly connected to the threading layer, by running the 
OpenMP across sixteen SSPs per node. This is accomplished by using the -O spp compiler directive. 
This can be an effective programming model since vectorization has the inner loop all to itself and the 
sixteen threads are all managed by OpenMP to saturate the node.  

Example 4 is based on the standard MSP model. The compiler finds some high level loop and streams 
across it. Vectorization is used on the lowest level. The limitation of this loop is that it can only scale to 
one MSP or 1/4 of the node, but has a lower overhead than OpenMP since the streaming is done on an 
instruction level.  

Programming Models Applied to sPPM 



With an understanding of these programming models, let us now explore how to best map the sPPM 
benchmark to the Cray X1 node. When the code was first ported to the Cray X1, the performance was 
about two Gflops per MSP. This was due to the structure of the code. Here is a high level view of the 
loop structure.  

 do n=1,num_domains              MPI domain Layer     
   do mypen=1,nypens * nzpens    OpenMP pencil Layer  
     do k= z_start, z_stop    \                       
       do j = y_start, y_stop  \                      
         do i = x_start, x_stop \ Extract pencil      
         end do                 /   of y/z data       
       end do                  /                      
     end do                   /                       
     do izy=1,(y_stop-y_start)*(z_stop-z_start)       
       do i = 2-nbdy, n+nbdy-1      \                 
       end do                        \                
       :                              \               
       : Several single nested loops   } sppm routine 
       :                              /               
       do i = 2-nbdy, n+nbdy-1       /                
       end do                       /                 
     end do                End strips within a pencil 
     do k= z_start, z_stop    \                       
       do j = y_start, y_stop  \                      
         do i = x_start, x_stop \                     
         end do                 / Store pencil data   
       end do                  /                      
     end do                   /                       
   end do                    End OpenMP pencil layer  
 end do                     End MPI domain layer      

The outer most leaf of the subroutines is the sppm subroutine. This routine is composed of a series of 
singly nested loops that have a trip count on the order of the X dimension of the sub-domain. Since these 
are single nested loops, the compiler has to stream and vectorize this trip count. Two problem sizes were 
examined, one with a sub-domain grid of 192 x 192 x 192 in the x, y, z and the other with a grid size of 
384 x 384 x 384. For the initial problem size of 192 x 192 x 192 the machine had to divided 192 by four, 
one for each stream, and give each SSP a trip count of 48 elements, small relative to the machine's 
vector length of 64 elements. For the 384x384x384 problem, each SSP gets a trip count of 96 elements - 
better but still not long enough for great performance. To get the optimal performance, the compiler 
needs to pass the full leading dimension to the vector pipes on the SPP. To accomplish this, we need to 
compile the sppm subroutine in SSP mode with the compiler option -O ssp. By compiling a single 
streaming version of the subroutine, the compiler only vectorizes these single nested loops. On the 
calling side the compiler directive, !csd$ parallel do, is used to tell the compiler to stream across the 
calls to sppm. This is what that code sample looks like.  

     !dir$ ssp_private sppm 
     !csd$ parallel do 
           do 1200 izy= 0, (izstop-izstart+1)*(iystop-iystart+1)-1 
             iz= izy/(iystop-iystart+1) + izstart 
             iy= mod( izy, (iystop-iystart)+1 ) + iystart 
             call sppm( xl, rrho, pp, uux, uuy, uuz, iy+noffy, iz+noffz, 
          &             rhonu(1-5,iy+noffy,iz+noffz), 
          &             pnu  (1-5,iy+noffy,iz+noffz), 
          &             uxnu (1-5,iy+noffy,iz+noffz), 
          &             uynu (1-5,iy+noffy,iz+noffz), 
          &             uznu (1-5,iy+noffy,iz+noffz), 



          &             dtime, cournt, gamma, 
          &             smlrho, smalle, smallp, smallu, nx, 5 ) 
      1200 continue 
     !csd$ end parallel do 

Note the use of the CSD directive, !dir$ ssp_private sppm. This is needed to tell the compiler that a 
single streaming version of sppm exists and it is safe to multi-stream the loop. This optimizes the lowest 
two loop levels, vectorizing the many single nested loops within the subroutine sppm and streaming 
across the do 1200 loop. Moving to the next level of loops higher, the do mypen=1,nypens*nzpens 
can be threaded if needed. On one hand threading this loop with OpenMP would be more efficient since 
the communication between processors within OpenMP is cheaper than moving data between processors 
using MPI. In addition, coarse grain parallelism (few large tasks vs. many small tasks) is usually more 
efficient.  

Both of these would imply that threading at the pencil loop would be more efficient. However in this 
case it is not. One reason is that the blocks of work do not change greatly by threading at this level. It 
simply groups four 384x384x384 domains together. The main reason for the lack of additional speed in 
threading this loop is the resources available for moving data during the MPI communication stage. If 
the pencil loop is threading, the MPI communication will be performed by only one MSP, if the loop is 
not threaded, each block is under its own MPI processes, so we have four MSPs involved in the MPI 
communication.  

Performance of sPPM on the Cray X1 and Itanium2 Linux 
Cluster 
Before talking about the results, the problem size has to be considered since the performance can be 
greatly dependent on size. In order to give each programming model an equal chance of performing 
well, a problem size of 384x384x384 per MSP was chosen. This ensures that each MSP has enough 
work, and that the lowest level vector work has long enough trip counts to perform well. Another 
decision was to measure performance on a per node basis instead of a per MSP or SSP basis. Since we 
are mixing MSP and SSP programming modes with both OpenMP and MPI programming, the least 
common multiple is the node. Recall that the Cray X1 node can be four MSP processors running 
OpenMP or MPI, or sixteen SSP processors running OpenMP or MPI. Another reason for benchmarking 
on multiples of nodes is to minimize variations in the timings. By using all four MSPs on a node, the 
program has complete control over the memory bandwidth within the node. Even when the benchmark 
spans multiple nodes, within each node the program has complete control over the nodes memory 
bandwidth, and is only affected by other jobs using the bandwidth between nodes1.  

To scale the problem past the node, the program needs to use MPI. For the results given below, the 384 
x 384 x 384 per MSP problem size was continued for each new node. Therefore each node has a 
problem size of 2(384) x 2(384) x 384 or 768 x 768 x 384 grid points. From an SSP perspective the 
problem size is 4(192) x 4(192) x 384 or again 768 x 768 x 384 grid points. Scaling to multiple nodes 
involves only changing the Z dimension. Here is a table of the size configurations for the test cases used 
with the four different programming models. Note that in all cases the total size is the same on a per 
node basis.  

 Nodes MSP   Model   Threads    MPI      Sub-domain Size     Total Size 
                              X  Y  Z       X   Y   Z        X    Y    Z 
   1     4  MSP_MPI     1     2  2  1      384 384 384     768  768  384 
   2     8  MSP_MPI     1     2  2  2      384 384 384     768  768  768 



   4    16  MSP_MPI     1     2  2  4      384 384 384     768  768 1536 
   8    32  MSP_MPI     1     2  2  8      384 384 384     768  768 3072 
  16    64  MSP_MPI     1     2  2 16      384 384 384     768  768 6144 
 
   1     4  MSP_OMP     4     1  1  1      768 768 384     768  768  384 
   2     8  MSP_OMP     4     1  1  2      768 768 384     768  768  768 
   4    16  MSP_OMP     4     1  1  4      768 768 384     768  768 1536 
   8    32  MSP_OMP     4     1  1  8      768 768 384     768  768 3072 
  16    64  MSP_OMP     4     1  1 16      768 768 384     768  768 6144 
 
   1     4  SSP_MPI     1     4  4  1      192 192 384     768  768  384 
   2     8  SSP_MPI     1     4  4  2      192 192 384     768  768  768 
   4    16  SSP_MPI     1     4  4  4      192 192 384     768  768 1536 
   8    32  SSP_MPI     1     4  4  8      192 192 384     768  768 3072 
  16    64  SSP_MPI     1     4  4 16      192 192 384     768  768 6144 
 
   1     4  SSP_OMP    16     1  1  1      768 768 384     768  768  384 
   2     8  SSP_OMP    16     1  1  2      768 768 384     768  768  768 
   4    16  SSP_OMP    16     1  1  4      768 768 384     768  768 1536 
   8    32  SSP_OMP    16     1  1  8      768 768 384     768  768 3072 
  16    64  SSP_OMP    16     1  1 16      768 768 384     768  768 6144 

Results were collected for five scenarios, the four pure programming models; MSP_MPI, MSP_OMP, 
SSP_MPI, and SSP_OMP and the best performing version that uses the Cray streaming directives, 
MSP_CSD_MPI, to stream across the calls to the sppm subroutine. The results all used the 384x384x384 
per MSP data set size. The values in the table are Gflops with the percent of peak given in (). The peak 
performance is 12.8 Gflops per MSP or 51.2 Gflops per node.  

                          Cray X1 GFLOPS (%peak) 
 
 Nodes MSPs  MSP_CSD_MPI     MSP_MPI      MSP_OMP      SSP_MPI      SSP_OMP 
   1    4    14.61 (29%)    9.52 (19%)  11.06 (22%)  10.45 (20%)  13.52 (26%) 
   2    8    29.57 (29%)   21.49 (21%)  22.20 (22%)  20.88 (20%)  26.16 (26%) 
   4   16    57.24 (29%)   42.93 (21%)  44.28 (22%)  41.72 (20%)  53.45 (26%) 
   8   32   118.11 (29%)   85.93 (21%)  88.62 (22%)  83.38 (20%) 104.39 (25%) 
  16   64   237.08 (29%)  172.39 (21%) 177.56 (22%) 225.792(27%) 208.99 (26%) 
  31  124   459.61 (29%)  334.77 (21%) 344.00 (22%) 322.97 (20%) 402.19 (25%) 

Looking at the results, clearly the MSP_CSD_MPI version is the best performing, sustaining 29% of the 
peak of the hardware. The two pure MSP models, MSP_MPI and MSP_OMP, do poorly. The main 
reason here is the innermost loops within the sppm subroutine needs to be both streamed and vectorized 
giving the vector pipe only enough work for one and a half vector slices (384/4=96, 96/64=1.5). A larger 
problem would help, but the code would run into memory limits soon. The most interesting results are 
those for the SSP_OMP version that almost matches the MSP_CSD_MPI version. The vectors on the 
innermost loops are performing efficiently with six vector slices to work with (384/64=6). In addition, 
the lower overhead of the OpenMP, vs. MPI, is giving it a boost over the SSP_MPI version. In the end, 
the MSP_CSD_MPI version is running better because the CSD streaming has a lower overhead then the 
OpenMP in the SSP_OMP version.  

For comparison purposes runs of the sPPM benchmark were also performed on an Itanium2 Linux 
cluster located at NCSA. The cluster consists of 256 dual processor Itanium2 nodes running at a 
processor speed of 1.3 GHz and having a peak performance of 5.2 Gflops per processor. The nodes are 
connected with a Myrinet 2000 interconnect. Below are the results for runs on up to 32 nodes, using one 
processor per node. More information can be found at the NCSA web site, 
http://www.ncsa.uiuc.edu/UserInfo/Perf/NCSAbench/sPPM.html.  



 Nodes CPUs Threads   MPI    Sub-domain Size   Total Size     GFlops   %Peak 
                     X Y Z      X   Y   Z      X    Y   Z 
   1     1     1     1 1 1     384 384 384    384  384 384     0.9273    18% 
   2     2     1     2 1 1     384 384 384    768  384 384     1.8433    18% 
   4     4     1     2 2 1     384 384 384    768  768 384     3.6033    17% 
   8     8     1     2 2 2     384 384 384    768  768 768     7.3263    18% 
  16    16     1     4 2 2     384 384 384   1536  768 768    14.5413    17% 
  32    32     1     4 4 2     384 384 384   1536 1536 768    29.1133    17% 

As can be seen on both the Itanium2 and Cray X1, the sPPM benchmark can be well tuned for both 
microprocessor/cache based machines and multi-stream vector hardware. The Cray X1 has an advantage 
in that it has a higher peak value for the MSP processor and is also able to get a much higher percentage 
of that peak. 

All the results presented in this paper are for 64-bit words. The only exception follows. During the 
porting and optimization of sPPM, a 32-bit version of the code was compiled and tested on the Cray X1. 
The results show a higher flop rate, but the percent of peak is lower and based on a 32-bit peak rate of 
25.6 Gflops per MSP.  

     Single MSP 64-bit: 3.698 Gflops (29%) 
     Single MSP 32-bit: 5.722 Gflops (22%) 
 
     120 MSPs 32-bit:   663.0 Gflops (22%)      512x 500x 250 problem size 
     252 MSPs 32-bit:  1396.6 Gflops (22%)     1536x1536x1792 problem size 

Footnotes 

 1 All jobs run on the Cray X1 used the -N {num} option on the aprun command line. Where {num} is 4 
for MSP jobs and 16 for SSP jobs. This forces the job not to span multiple nodes unless needed.  

 2This value looks suspicious, and has not been verified due to a limit on machine resources. 
 

 3The Itanium2 Linux Cluster Gflops reported in this paper are actually 1/2 of those reported by the 
hardware performance monitor on the Itanium2. The reason is that the reported values are twice the 
value of what was expected when compared to the elapsed time used during the program and as 
compared to other microprocessor hardware platforms. It is felt that either the MADD instruction is 
throwing the flop count off, or the fact that the machine is a duel processor SMP node, has affected the 
flop count.  
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