
CUG 2004 Proceedings 1

Optimization of LESlie3D for the Cray X1 Architecture

Sam Cable and Thomas Oppe, ERDC MSRC

ABSTRACT: LESlie3D is a CFD code that solves the fully compressible Filtered Navier-
Stokes equations, the energy equation, and the chemical species equations using an explicit
finite-volume approach. A version of this code for structured meshes was included in the
DoD High Performance Computing Modernization Program’s application benchmark suite
used for performance evaluation of HPC platforms. Cray applications specialists optimized
this version for the X1 architecture. The techniques used for the optimization are presented,
and a comparison of the original and optimized versions of LESlie3D is made using hardware
counter data obtained from Cray PAT on the X1 and from PAPI on an IBM Power4.

1. Introduction

ERDC MSRC

The U.S. Army Engineer Research and Development
Center (ERDC) Major Shared Resource Center (MSRC) in
Vicksburg, MS is one of four centers in the nation operated
by the Department of Defense High Performance
Computing Modernization Program (HPCMP) to supply
HPC resources to scientists and researchers involved in
computational projects funded by the DoD. Since its
inception, the goal of the HPCMP has been to supply the
nation’s armed services with the most powerful
computational resources available. The center at Vicksburg
operates a 1904-pe Cray T3E, a 512-pe HP AlphaServer
SC40, a 512-pe HP AlphaServer SC45, three 512-pe Origin
3900 platforms, and a 64-MSP Cray X1. These HPC
resources support a number of on-site and off-site
researchers in various computational fields designated as
Computational Technology Areas (CTA’s). The various
CTA’s are:

CWO Climate/Weather/Ocean Modeling
EQM Environmental Quality Modeling
CE Computational Environment
SIP Signal/Image Processing
FMS Forces Modeling and Simulation/C4I
CFD Computational Fluid Dynamics
CSM Computational Structural Mechanics
CCM Computational Chemistry and Materials Science
CEA Computational Electromagnetics and Acoustics
CEN Computational Electronics and Nanoelectronics

Technology Insertion

In support of the HPCMP mission, a program for the
evaluation of HPC hardware has been instituted that
involves the running of application and synthetic benchmark

programs. The synthetic benchmarks are designed to stress
the various software and hardware subsystems in a parallel
computer, such as those involved with the processor, cache,
memory, I/O, and communications network. The
applications benchmarks, on the other hand, are chosen to
be typical of the kinds of computation done in the various
CTAs and representative of the workload characterizing
each MSRC. For each fiscal year since 2001, the
Computational Science & Engineering group at ERDC has
been tasked with the responsibilities of assembling the
application benchmark suite and checking the HPC vendors’
responses for completeness and accuracy. The vendor
responses are then analyzed by the HPCMP for use in HPC
procurement decisions.

LESlie3D

LESlie3D (for "L"arge-"E"ddy "S"imulation "Li"near
"E"ddy Model in "3D") was chosen for the TI-02 and TI-03
application benchmark suites as a typical CFD code.
LESlie3D is a three-dimensional, Navier-Stokes solver for
turbulent reacting flows. It was originally written by
Professor Suresh Menon of Georgia Tech’s Computational
Combustion Laboratory but has undergone many changes in
time. It employs a finite-volume predictor-corrector scheme
that is fourth-order accurate in space and second order
accurate (explicit) in time. The code solves the conservation
of mass, momentum, energy and species equations using a
conservative formulation. The code is designed to operate in
either a direct numerical simulation (DNS) approach or a
large-eddy simulation (LES) approach. In the LES approach
(which was used for the benchmark), all scales larger than
the grid are resolved using the finite-volume scheme and
only scales smaller than the grid are modeled using a
subgrid model. In LESlie3D, a one-equation model for the
subgrid kinetic energy is used to close the unresolved terms
in the LES equations. It is also capable of employing a

CUG 2004 Proceedings 2

localized dynamic evaluation of the coefficients in the
subgrid closure.

LESlie3d has been used to solve problems of various
complexities, from mixing layers to gas turbine combustors.
There exist solvers for both cylindrical and square
configurations. The algorithm is suitable for obtaining
high-resolution simulations of free shear flows such as those
encountered in mixing layers, isotropic turbulence, and
flame propagation. Curvilinear coordinate transformations
are not performed so a uniform grid is required. The code
allows a choice for the order of spatial accuracy (2nd or 4th),
the number of chemical species used (none, flame model, or
multiple species), the LES turbulence model (standard or k-
equation model), and inviscid or viscous flow. The
benchmark version of the code was set up for fourth-order
spatial accuracy, two chemical species, viscous flow, and
the standard LES turbulence model.

The code has been used for various reacting and non-
reacting flows such as swirl-stabilized combustion in a gas
turbine, spatial compressible mixing layers, combustion
instability in ramjet engines, etc. However, the version used
for the benchmark solves a simpler flow of a temporal
mixing layer formed between two parallel plates that are
moving in opposite directions. A uniform grid distribution
in all three directions is used to resolve the flow in a cubic
volume. Two scalar species are also simulated to mimic fuel
and air mixing in the mixing layer. Thus, a total of eight
conservation equations are solved in the benchmark version
of the code.

LESlie3d is written entirely in Fortran77 and is
parallelized using the Message Passing Interface (MPI). For
the fourth-order scheme, two layers of ghost cells are
required in each processor at every time step.

2. Description of systems - hardware

The HPC platforms used in this study are the 64-MSP
Cray X1 named “diamond” at ERDC MSRC in Vicksburg,
MS, and the IBM POWER4 (p690) named “marcellus” at
NAVO MSRC.

The ERDC X1 has 64 Multi-Stream Processors (MSP),
with four reserved for the operating system, and 60 MSP’s
available for application processing. Each X1 MSP consists
of four Single-Stream Processors (SSP’s) with each SSP
consisting of two vector functional units running at 800
MHz and a single scalar functional unit running at 400
MHz. On diamond, then, an MPI code compiled in MSP
mode can use up to 60 MPI processes and, if compiled in
SSP mode, can use up to 240 MPI processes.

Addition and multiplication vector instructions can be
chained in each vector functional unit, so the peak speed of
the MSP is 800*4*2*2 = 12.8 GigaFLOPS in 64-bit

precision. The vector functional units can process 32-bit
operands at twice the rate of 64-bit operands, so that the
peak speed in 32-bit precision is 25.6 GigaFLOPS. Since
the “vector speed” is so much greater than the “scalar
speed” on the X1, vectorizing a code as much as possible is
crucial to maximizing X1 performance. Since “multi-
streaming,” or the splitting of vector operations between the
four SSP’s in an MSP, is done in hardware, it is also
desirable to multi-stream the loops of a code as much as
possible. If multi-streaming is not possible or efficient for a
code, the code can be compiled in SSP mode so that vector
instructions are executed in a single SSP rather than spread
across the four SSP’s of an MSP. MPI codes that are
compiled in SSP mode can use four times as many
processes than if compiled in MSP mode, but more
synchronizations will be performed through the MPI
software. Thus, due to hardware synchronizations, a code
that multi-streams well may run faster in MSP mode than in
SSP mode using the same number of vector functional units.

NAVO’s POWER4 has 1408 IBM POWER4 RS6000
PEs, 1328 of which are available for application processing.
Each PE has a clock speed of 1.3GHz. The two floating-
point units on each PE together provide a peak processor
speed of 5.2 GigaFLOPS. Each PE has one gigabyte of
main memory. The PEs are connected via the fast IBM
Federation switches. Most of the PEs are grouped in nodes
of eight PEs, but two nodes of 32 PEs are available. The
POWER4 PEs do not have any equivalent to the X1’s multi-
streaming/single-streaming levels. They cannot take as
much advantage of vectorization, but neither is vectorizing a
code crucial to procuring their peak performance.

3. Description of LESlie3D benchmark

The benchmark problem was posed on a 3-D cube
domain discretized uniformly in each dimension using NX
grid lines. Upon this domain grid, a 3-D processor grid
configuration is imposed, say NPX by NPY by NPZ, where
NX must be evenly divisible by NPX, NPY, and NPZ. The
number of MPI processes is then the product of the
processor grid dimensions.

Parts of the LESlie3D benchmark run do not scale well
either in terms of memory use or run time. At the beginning
of the run, MPI process 0 reads a large binary file named
“mixing.data” and broadcasts it in the form of large arrays
to all processes. Each process then discards all values in
these global arrays that do not belong to its subdomain.
Also, a large file containing the global flow field is
assembled using the MPI_REDUCE operation and printed
by MPI process 0. During the time-stepping phase, nearest
neighbor communications in the three dimensions is done at
each time step, and trace files are written by MPI process 0
at every 100th time step. The global data written to the trace
files is computed using MPI_REDUCE operations.

CUG 2004 Proceedings 3

Optimization for the Cray X1

Cray application analysts optimized LESlie3D for the X1
platform for the HPCMP TI-03 applications benchmark.
The structure of many of the computationally intensive
loops in LESlie3D is that of a triply nested loop:

do k = k1,k2
 do j = j1,j2
 do i = i1,i2
 (work)
 end do
 end do
end do

In three routines (emsi, emsj, and emsk), the k and j loops
traverse the entire subroutine and there are many instances
of the innermost i loop. Without compiler directives, only
the innermost loops were being vectorized and multi-
streamed. Cray added a Cray Streaming Directive (CSD)
before the outermost loop to force that loop to multi-stream:

!CSD$ PARALLEL DO PRIVATE(vars)
do k = k1,k2
 do j = j1,j2
 do i = i1,i2
 (work)
 end do
 end do
end do

!CSD$ END PARALLEL DO

In three other routines (extrapi, extrapj, and extrapk), there
were several independent triply nested loops interspersed
with quadruply nested loops:

 do nn = 1,nspeci
 do k = k1,k2
 do j = j1,j2
 do i = i1,i2
 (work)
 end do
 end do
 end do
 end do

Without compiler directives, the outmost loop was often
multi-streamed, but a load imbalance resulted since nspeci
was not a multiple of four. To improve the load balance, an
artificial outermost loop of four iterations was inserted to
split the range of the k loop into four nearly equal pieces.
This new outermost loop was then multi-streamed with a
CSD directive.

!CSD$ PARALLEL DO PRIVATE(vars)
 do kth = 1,4

 k1new = k1 + (k2-k1+4)/4*(kth-1)
 k2new = k1new + (k2-k1+4)/4 - 1

 do nn = 1,nspeci
 do k = k1new,k2new
 do j = j1,j2
 do i = i1,i2
 (work)
 end do
 end do
 end do
 end do
 (other nested loops)
 end do

!CSD$ END PARALLEL DO

An experiment was made to compare the performance of the
original and optimized codes on the Cray X1 for two
problems: one using a mesh of 1923, 16 MSP processors,
and 500 time steps, and another using a mesh of 2643, 32
MSP processors, and 4000 time steps. The timing results in
Figure 1 show that there was a 20% improvement in run
time for both experiments. For the optimized code, the
proportion of time spent in computation decreased while the
proportion of time spent in communication and statistics
calculation increased. The statistics calculation did not
involve MPI communications.

Time speedup % comp % comm % stats

Orig 3:29 84.46% 11.06% 4.47%

Opt 2:47 20.10% 78.95% 15.42% 5.63%

Orig 44:35 83.78% 12.44% 3.78%

Opt 35:56 19.40% 76.26% 18.99% 4.75%

1923

16 PEs

2643

32 PEs

Figure 1: Timing statistics of original and optimized codes

Another experiment was conducted to use Cray PAT to
gather hardware counter information during runs of the
original and optimized LESlie3D codes when running the
1923 mesh problem with 16 MSP processors. For selected
counters, Figure 2 presents the ratio of the counters for the
optimized code to the original code. The results show a
dramatic decrease in the number of “Dcache misses” and of
“Dcache bypass references.” Scalar memory references,
scalar integer operations, and scalar floating point
operations all show significant reductions. Vector integer
operations, vector shifts, and vector TLB misses all show
large increases, presumably because more vector operations
are being done.

CUG 2004 Proceedings 4

0.01 0.10 1.00 10.00 100.00

Scalar FP ops
Scalar integer ops

Scalar memory refs
Vector TLB misses
Scalar TLB misses

Instr TLB misses
Total TLB misses

Dcache references

Dcache bypass refs
Dcache misses

Vector integer adds
Vector shifts
Vector int ops

Scalar memory refs
Scalar FP Instr
Syncs Instr

Vector Load Index

Counts, Optimized/Unoptimized

Figure 2: Cray PAT hardware counters before and after
optimization

A comparison of the most CPU intensive subroutines was
made between the original and optimized codes using Cray
PAT to profile the codes. The mesh size was 2643 and 32
MPI processes were used, configured in a 2 by 4 by 4
processor grid. The results are given in Figure 3.

ratio
Rank % Inst. Instruc. Rank % Inst. Instruc.

emsk 1 19.1% 665814 4 11.9% 283487 0.43
emsi 2 13.5% 470255 8 4.1% 97009 0.21
emsj 3 12.6% 440026 1 14.6% 348132 0.79
mpi_send 4 11.2% 391191 3 12.5% 296980 0.76
extrapi 5 8.3% 287500 7 5.8% 138908 0.48
extrapj 6 8.2% 286391 6 7.2% 170984 0.60
update 7 7.0% 244424 5 11.5% 273378 1.12
extrapk 8 4.8% 167912 2 12.9% 306958 1.83
cxchg 9 3.3% 114326 10 3.4% 81737 0.71
mpi_bcast 10 2.4% 81905
other 9.6% 334486 16.1% 383324 1.15
Total Inst. 3484230 2380897 0.68

Before Optimization After Optimization

Figure 3: LESlie3D profile before and after optimization

From Figure 3, it can be seen each of the six changed
routines had reduced instruction counts except extrapk,
which almost doubled. The reason for this behavior is
unknown, but it can be observed that several unchanged
routines also experienced significantly different instruction
counts. Thus, run-to-run variability may be a factor.

The profiles of the original and optimized versions of
LESlie3D are given in graphical form in Figures 9 and 10 in
the Appendix.

Running LESlie3D in MSP and SSP modes

 An experiment was performed to compare the
performance of the optimized LESlie3D code in SSP and
MSP modes. Since the optimized code multi-streams well,
it was believed that the MSP code, in which some
synchronizations are done in hardware, would perform
better than the SSP code, in which synchronizations are
done through the MPI software. Also, communication costs
for the MSP code were expected to be lower than for the
SSP code since fewer MPI processes were being used so
that fewer messages of larger size were being sent. Figures
4, 5, and 6 show that the optimized LESlie3D code had
lower communication and computation costs, and thus
lower run times, in MSP mode than in SSP mode for all the
mesh sizes and processor counts tested. The raw data for
these figures is given in Figures 11-14 in the Appendix.

100

1000

1 10 100
MSP Equivalents

ti
m

e

(s

e
c
)

 128 mesh; MSPs

128 mesh; SSPs

192 mesh; MSPs

192 mesh; SSPs

216 mesh; MSPs

216 mesh; SSPs

Figure 4: Total run time

0.01

0.1

1

1 10 100
MSP Equivalents

ti
m

e
 (

s
e
c
)

128 mesh; MSPs

128 mesh; SSPs

192 mesh; MSPs

192 mesh; SSPs

264 mesh; MSPs

264 mesh; SSPs

CUG 2004 Proceedings 5

Figure 5: Communication time per time step

0.1

1

10

1 10 100
MSP Equivalents

ti
m

e

(s

e
c
)

128 mesh; MSPs

128 mesh; SSPs

192 mesh; MSPs

192 mesh; SSPs

216 mesh; MSPs

216 mesh; SSPs

Figure 6: Computation time per time step

The LESlie3D code could be made to run efficiently on the
Cray X1 platform with a few minor changes to six routines.
The compiler was able to find enough work to multi-stream
to effectively use the MSP processors. However, in the
latest Programming Environment (PrgEnv 5.2), significant
improvements have been made in several MPI routines that
are heavily used in LESlie3D, in particular MPI_SEND and
MPI_BCAST. With these improvements in the MPI
software, the advantage of running in MSP mode over SSP
mode may not be as significant.

In the collection of the run data, it was noticed that there
was significant variability in the run times. This
necessitated making several identical runs for a given mesh
size and processor count and using the minimum time for
the results obtained in this study.

4. Cray X1 and IBM PWR4 Counter Data

 A number of runs were made on the Cray X1 at ERDC
and the IBM PWR4 (P690) platform at NAVO to collect
timings and hardware counter data. Figure 7 presents a
comparison of timings on the Cray X1 and IBM P4 for a
problem with a mesh size of 1923and using 16 processors
running for 500 time steps, where a “processor” for the X1
is defined as an MSP. Even if a processor on the X1 is
defined as an SSP, it can be seen that the X1 is over three
times faster. For this size problem, it can also be seen that
the X1 has a higher proportion of communication time.

Cray X1 X1 * 4 % total IBM P4 % total

Total run time 2:47 11:08 36:34

Per time step

 Time 0.334 1.336 100% 4.392 100%

 Calc. time 0.264 1.056 79% 3.43 78%

 Comm. time 0.052 0.208 16% 0.471 11%

 Stat. time 0.019 0.076 6% 0.49 11%

Figure 7: Cray X1 and IBM PWR4 comparison

 Several runs were also made on the two platforms to
compare their hardware performance characteristics when
running LESlie3D. On the X1, Cray PAT was used to
collect the counter data, while PAPI was used to collect
similar counter data on the IBM. Because of the radically
different architectures of the two platforms as well as the
different software used to collect the counter data, making
comparisons between specific counters on the two platforms
is difficult. It is thought that a rough equivalence exists
between the metrics presented in Figure 8. It can be seen
that the X1 performs fewer branches, has fewer branch
mispredictions, performs fewer integer operations, and has
better cache behavior than the P4.

PAT counter counts/MSP PAPI counter counts/PE

Cycles 2.80E+11 PM_CYC 2.83E+12

Branches & 1.38E+09 PM_BR_ISSUED 1.05E+11

 Jumps

Branches 3.55E+07 PM_BR_MPED_CR+ 2.18E+09

 mispredicted PM_BR_MPRED_TA

Total FP ops 3.52E+11 PM_FPU_ALL 1.71E+11

Vector int ops + 1.12E+09 PM_FXU_FIN 3.34E+11

 Scalar int ops

Dcache refs 8.72E+08 PM_LD_REF_L1 3.40E+11

Figure 8: Selected Cray PAT and PAPI counters

 Selected PAPI counter events were collected for two
runs: a run using a 1923 mesh, 16 processors, and 500 time
steps and another run using a 2643 mesh, 54 processors, and
4000 time steps. The counter data for these runs is given in
Figures 15 and 16 in the Appendix.

Conclusions

 The LESlie3D code was optimized for the TI-03
application benchmark suite by making minor changes to
six routines. These changes improved the multi-streaming
efficiency of the code so that running in MSP mode was
more efficient than running in SSP mode. The optimized
code ran approximately 20% faster than the original code
and performed more vector operations.

CUG 2004 Proceedings 6

The performance of the optimized code on the X1 also
compared favorably to its performance on the IBM P4,
running 12 times faster at the MSP level and three times
faster at the SSP level. The X1 also gets better hardware
performance than the P4 in several areas: integer operations,
cache behavior, and number of branches.

Appendix

%CPU by routine before optimization

emsk_

emsi_

emsj_

mpi_send_

extrapi_

extrapj_

update_

extrapk_

cxchg_

MPI_CRAY_bcast

other

Figure 9: Profile of original code

%CPU by routine after optimization

emsk_

emsi_

emsj_

mpi_send_

extrapi_

extrapj_

update_

extrapk_

cxchg_

MPI_CRAY_bcast

other

Figure 10: Profile of optimized code

CUG 2004 Proceedings 7

Total time per time step

PE's time Total Calc Comm Stat

2 MSPs 355.09 0.67856 0.55135 0.08378 0.04327

81.25% 12.35% 6.38%

8 SSPs 393.64 0.76146 0.54415 0.18176 0.03546

71.46% 23.87% 4.66%

MSP/SSP 0.9 0.89 1.01 0.46 1.22

4 MSPs 198.91 0.36681 0.29101 0.05275 0.02296

79.33% 14.38% 6.26%

16 SSPs 226.46 0.42168 0.32827 0.07149 0.02188

77.85% 16.95% 5.19%

MSP/SSP 0.88 0.87 0.89 0.74 1.05

8 MSPs 115.14 0.19309 0.15107 0.03035 0.01162

78.24% 15.72% 6.02%

32 SSPs 146.12 0.25158 0.17502 0.06598 0.01055

69.57% 26.23% 4.19%

MSP/SSP 0.79 0.77 0.86 0.46 1.1

Figure 11: 1283 mesh, 500 time steps

Total time per time step

PE's time Total Calc Comm Stat

2 MSPs 1151.09 2.2399 1.91329 0.183 0.14344

85.42% 8.17% 6.40%

8 SSPs 1204 2.40882 2.04168 0.22827 0.13881

84.76% 9.48% 5.76%

MSP/SSP 0.96 0.93 0.94 0.8 1.03

4 MSPs 597.2 1.13675 0.93917 0.12309 0.07439

82.62% 10.83% 6.54%

16 SSPs 668.07 1.27098 1.06322 0.13524 0.07248

83.65% 10.64% 5.70%

MSP/SSP 0.89 0.89 0.88 0.91 1.03

8 MSPs 333.71 0.5917 0.48827 0.06588 0.03751

82.52% 11.13% 6.34%

32 SSPs 406.61 0.72734 0.58547 0.10579 0.03606

80.49% 14.54% 4.96%

MSP/SSP 0.82 0.81 0.83 0.62 1.04

Figure 12: 1923 mesh, 500 time steps

Total time per time step

PE's time Total Calc Comm Stat

8 MSPs 478.42 0.84362 0.70287 0.08968 0.05101

83.32% 10.63% 6.05%

32 SSPs 545.85 0.97378 0.7923 0.13205 0.0494

81.36% 13.56% 5.07%

MSP/SSP 0.88 0.87 0.89 0.68 1.03

16 MSPs 269.25 0.44476 0.36494 0.05375 0.02605

82.05% 12.08% 5.86%

64 SSPs 326.36 0.5365 0.42119 0.08996 0.02533

78.51% 16.77% 4.72%

MSP/SSP 0.83 0.83 0.87 0.6 1.03

32 MSPs 175.12 0.24655 0.19052 0.04297 0.01304

77.28% 17.43% 5.29%

128 SSPs 218.64 0.30149 0.22283 0.06585 0.01279

73.91% 21.84% 4.24%

MSP/SSP 0.8 0.82 0.86 0.65 1.02

Figure 13: 2163 mesh, 500 time steps

Total time per time step

PE's time Total Calc Comm Stat

8 MSPs 6361.8 1.57096 1.30453 0.17396 0.09241

83.04% 11.07% 5.88%

32 SSPs 7877.12 1.94647 1.58654 0.2628 0.09707

81.51% 13.50% 4.99%

MSP/SSP 0.81 0.81 0.82 0.66 0.95

16 MSPs 3292.59 0.80402 0.66588 0.09099 0.04713

82.82% 11.32% 5.86%

64 SSPs 4888.62 1.19687 0.95864 0.18293 0.05527

80.10% 15.28% 4.62%

MSP/SSP 0.67 0.67 0.69 0.5 0.85

32 MSPs 1919.13 0.45975 0.3629 0.0716 0.02523

78.93% 15.57% 5.49%

128 SSPs 2583.51 0.61233 0.48186 0.10482 0.02562

78.69% 17.12% 4.18%

MSP/SSP 0.74 0.75 0.75 0.68 0.98

Figure 14: 2643 mesh, 4000 time steps

CUG 2004 Proceedings 8

EVENT 16 pe 54 pe

NUMBER_of_MSGs_DONE 0.00E+00 0.00E+00

PM_BIQ_IDU_FULL_CYC 2.48E+12 1.42E+13

PM_BR_ISSUED 1.05E+11 7.89E+11

PM_BR_MPRED_CR 7.08E+08 9.34E+09

PM_BR_MPRED_TA 1.47E+09 1.66E+10

PM_CYC 2.83E+12 1.71E+13

PM_DTLB_MISS 4.74E+08 3.33E+09

PM_FPU_ALL 1.71E+11 1.06E+12

PM_FPU_DENORM 5.50E+06 8.34E+07

PM_FPU_FDIV 2.57E+10 1.59E+11

PM_FPU_FIN 4.06E+11 2.51E+12

PM_FPU_FMA 7.87E+10 4.86E+11

PM_FPU_FMOV_FEST 7.27E+09 4.50E+10

PM_FPU_FRSP_FCONV 7.90E+06 6.56E+07

PM_FPU_FSQRT 1.42E+09 8.78E+09

PM_FPU_STALL3 1.31E+10 8.38E+10

PM_FPU_STF 1.23E+11 7.58E+11

PM_FPU0_FIN 2.25E+11 1.38E+12

PM_FPU1_FIN 1.82E+11 1.14E+12

PM_FXU_FIN 3.34E+11 2.49E+12

PM_FXU0_FIN 1.14E+11 9.56E+11

PM_FXU1_FIN 2.16E+11 1.56E+12

PM_GRP_DISP_REJECT 1.19E+12 6.78E+12

PM_GRP_DISP_VALID 1.55E+12 9.49E+12

PM_INST_CMPL 8.94E+11 6.40E+12

PM_INST_DISP 4.18E+12 2.52E+13

PM_INST_FETCH_CYC 2.74E+12 1.63E+13

PM_INST_FROM_L1 2.52E+11 2.01E+12

PM_INST_FROM_L2 5.77E+07 6.77E+08

PM_INST_FROM_L25_L275 3.19E+06 2.60E+07

PM_INST_FROM_L3 5.78E+06 4.31E+07

PM_INST_FROM_L35 0.00E+00 0.00E+00

PM_INST_FROM_MEM 8.88E+05 6.01E+06

PM_ITLB_MISS 1.87E+06 1.38E+07

PM_L1_WRITE_CYC 4.42E+08 5.29E+09

PM_LD_MISS_L1 7.24E+09 6.16E+10

PM_LD_REF_L1 3.40E+11 2.54E+12

PM_LSU_LDF 2.66E+11 1.65E+12

PM_ST_MISS_L1 6.03E+10 3.37E+11

PM_ST_REF_L1 1.52E+11 1.11E+12

Figure 15: IBM P4 PAPI events

P4 Event Counts

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10 1.E+12 1.E+14

PM_BIQ_IDU_FULL_CYC
PM_BR_ISSUED

PM_BR_MPRED_CR
PM_BR_MPRED_TA

PM_CYC
PM_DTLB_MISS

PM_FPU_ALL
PM_FPU_DENORM

PM_FPU_FDIV
PM_FPU_FIN

PM_FPU_FMA
PM_FPU_FMOV_FEST

PM_FPU_FRSP_FCONV
PM_FPU_FSQRT

PM_FPU_STALL3
PM_FPU_STF
PM_FPU0_FIN
PM_FPU1_FIN
PM_FXU_FIN

PM_FXU0_FIN
PM_FXU1_FIN

PM_GRP_DISP_REJECT
PM_GRP_DISP_VALID

PM_INST_CMPL
PM_INST_DISP

PM_INST_FETCH_CYC
PM_INST_FROM_L1
PM_INST_FROM_L2

PM_INST_FROM_L25_L275
PM_INST_FROM_L3

PM_INST_FROM_L35
PM_INST_FROM_MEM

PM_ITLB_MISS
PM_L1_WRITE_CYC

PM_LD_MISS_L1
PM_LD_REF_L1

PM_LSU_LDF
PM_ST_MISS_L1
PM_ST_REF_L1

Events

54 PEs

16 PEs

Figure 16: IBM P4 PAPI events

Acknowledgments
The authors would like to thank Dr. Alan Minga of

Cray for his help in obtaining the optimized benchmark
version of LESlie3D and for his guidance in the use of Cray
PAT. We would also like to thank the Cray X1 system
administrators and the support staff at the ERDC
Information Technology Laboratory for their helpful
assistance in using the machine.

About the Authors
 Sam Cable and Thomas Oppe are Application Analysts

in the Computational Science & Engineering group at the
U.S. Army Engineer Research and Development Center
Major Shared Resource Center (ERDC MSRC) in
Vicksburg, MS. They can be reached at U. S. Army ERDC,
ATTN: CEERD-IH, 3909 Halls Ferry Road, Vicksburg, MS
39180-6199, E-mail: Sam.B.Cable@erdc.usace.army.mil or
Thomas.C.Oppe@erdc.usace.army.mil

