
Your corporate
logo here

Optimization of
LESlie3D for the

Cray X1
Architecture

Sam Cable and Tom Oppe, ERDC MSRC
Vicksburg, MS

We compare execution speeds and
profiles of the CFD code LESlie3D ….
…. On the X1, optimized code vs. original.

…. On the X1 vs. on the IBM POWER4.

The ERDC X1: “Diamond”

• 64 Cray X1 MSPs (256
SSPs)

• 60 MSPs available for
computation
(240 SSPs)

• 16 nodes of 4 MSPs each

• Liquid cooled

• 4.5 TB scratch space

The Code: LESlie3D

Large Eddy Simulation Linear Eddy Model in 3D

•3D Navier-Stokes solver for
turbulent reacting flows (e.g.
combustion), developed by
Ga. Tech’s Computational
Combustion Laboratory
•Finite-volume predictor-
corrector conservative
scheme
•4th order accurate in space;
2nd order in time
•Direct simulation mode and
Large Eddy Simulation
modes available

LESlie3D Divides Its Structured Mesh Into
Several Structured Sub-meshes.

264
132 132

26
4

26
4

66
66

66
66

EXAMPLE:

2643 mesh

With 2x4x4 PEs.

LESlie3D is a vector code, which makes it
a good candidate for porting to the X1.

LESlie3D consistently runs faster in
MSP mode than in SSP mode.

100

1000

1 10 100

MSPs (= SSPs/4)

ti
m

e
(s

ec
)

128 mesh; MSPs

128 mesh; SSPs

192 mesh; MSPs

192 mesh; SSPs

216 mesh; MSPs

216 mesh; SSPs

Run times of several 500 timestep runs.

MSP mode spends less time in
communication.

0.01

0.1

1

1 10 100
MSPs (= SSPs/4)

ti
m

e
 (

s
e

c
)

128 mesh; MSPs

128 mesh; SSPs

192 mesh; MSPs

192 mesh; SSPs

264 mesh; MSPs

264 mesh; SSPs

Communication time per timestep.

MSP runs are also faster in
calculation time.

0.1

1

10

1 10 100
MSPs (= SSPs/4)

ti
m

e
 (

s
e

c
)

128 mesh; MSPs

128 mesh; SSPs

192 mesh; MSPs

192 mesh; SSPs

216 mesh; MSPs

216 mesh; SSPs

Calculation time per timestep.

Cray analysts added streaming
directives to several loops to obtain

multistreaming.

do k = k1,k2
 do j = j1,j2
 do i = i1,i2

 (work)
 end do
 end do
end do

!CSD$ PARALLEL DO
PRIVATE(vars)

do k = k1,k2
 do j = j1,j2
 do i = i1,i2

 (work)
 end do
 end do
end do
!CSD END PARALLEL DO

Cray analysts broke up other loops to
promote load balancing.

 do nn = 1,nspeci
 do k = k1,k2
 do j = j1,j2
 do i = i1,i2
 (work)
 end do
 end do
 end do
end do

!CSD$ PARALLEL DO
PRIVATE(vars)

 do kth=1,4
 k1new=k1+(k2-k1+4)/

 4*(kth-1)
 k2new=k1new+(k2-k1+4)/

4 - 1
 do nn = 1,nspeci
 do k = k1new,k2new
 do j = j1,j2
 do i = i1,i2
 (work)
 end do
 end do
 end do
 (other nested loops)
 end do
 !CSD$ END PARALLEL DO

Cray CSD optimizations sped up LESlie3D
by about 20 per cent.

% speedup
Original Optimized Original Optimized Original Optimized Original Optimized

1923 mesh;
16 MSPs;
500 timesteps

3:29 2:47 20.10% 84.46% 78.95% 11.06% 15.42% 4.47% 5.63%

2643 mesh;
32 MSPs;
4000
timesteps

0:44:35 0:35:56 19.40% 83.78% 76.26% 12.44% 18.99% 3.78% 4.75%

Run time
% time in

computation
% time in

communication
% time in

stats

Optimization generally increased vector
operations and decreased scalars.

0.01 0.10 1.00 10.00 100.00

Scalar FP ops
Scalar integer ops

Scalar memory refs
Vector TLB misses
Scalar TLB misses

Instr TLB misses
Total TLB misses

Dcache references
Dcache bypass refs

Dcache misses
Vector integer adds

Vector shifts
Vector int ops

Scalar memory refs
Scalar FP Instr
Syncs Instr

Vector Load Index

Counts, Optimized/Unoptimized

From runs on 1923 mesh, 1x4x4 PEs

%CPU by routine before optimization

19%

14%

13%
11%

8%

8%

7%

5%

3%

2%

10% emsk_

emsi_

emsj_

mpi_send_

extrapi_

extrapj_

update_

extrapk_

cxchg_

MPI_CRAY_bcast

other

Optimization created significant changes in
performance of individual routines.

%CPU by routine after optimization

12%

4%

14%

13%

6%7%
12%

13%

3%

3%
13%

emsk_

emsi_

emsj_

mpi_send_

extrapi_

extrapj_

update_

extrapk_

cxchg_

MPI_CRAY_bcast

other

Optimization created significant changes in
performance of individual routines.

We ran LESlie3D on the X1 and the IBM
P4 and compared timings.

X1 X1 * 4 % of total P4 % of total
Run time (sec) 2:47 11:08 36:34
Time per timestep 0.334 1.336 100% 4.392 100%
Calc. time per timestep 0.264 1.056 79% 3.430 78%
Comm. time per timestep 0.052 0.208 16% 0.471 11%
Stat. time per timestep 0.019 0.076 6% 0.490 11%

From 1923 mesh; 16 PEs; 500 timesteps

We have also collected hardware
performance data on the Cray X1 and the

IBM P4.

• X1:

• pat_hwpc counters
– Cycles

– Instructions
graduated

– Vector Instructions

– Scalar memory refs

– Vector FP adds

• P4:

• PAPI counters
– PM_CYC

– PM_BR_ISSUED

– PM_FPU_ALL

– PM_FXU_ALL

– PM_LD_REF_L1

– PM_FPU_FMA

Comparison is not so straightforward….

… but we did our best.

X1 pat_hwpc counter counts/MSP P4 PAPI counter counts/PE
Cycles 2.800E+11 PM_CYC 2.831E+12
Branches & Jumps 1.384E+09 PM_BR_ISSUED 1.052E+11
Branches mispredicted 3.554E+07 PM_BR_MPED_CR+

PM_BR_MPRED_TA
2.178E+09

Total FP ops 3.524E+11 PM_FPU_ALL 1.705E+11
Vector int ops + Scalar
int ops

1.117E+09 PM_FXU_FIN 3.335E+11

Dcache refs 8.715E+08 PM_LD_REF_L1 3.398E+11

From 1923 mesh; 16 PEs; 500 timesteps

Conclusion

Optimized vs. original code
Optimized code ran 20% faster than original.

Optimizations resulted in more vector operations.

X1 vs. P4
The X1 outperforms the P4 by a factor of 12 at MSP

level, factor of 3 at SSP level.

The X1 gets better hardware performance in several
areas:

Integer ops

Cache

Branches

