
Experiences in the Performance Analysis and Optimization of a
Deterministic Radiation Transport Code on the Cray SV1

Peter Cebull, Idaho National Engineering & Environmental
Laboratory

ABSTRACT: The Attila radiation transport code, which solves the Boltzmann neutron
transport equation on three-dimensional unstructured tetrahedral meshes, was ported to a
Cray SV1. Cray's performance analysis tools pointed to two subroutines that together
accounted for 80%-90% of the total CPU time. Source code modifications were performed to
enable vectorization of the most significant loops, to correct unfavorable strides through
memory, and to replace a conjugate gradient solver subroutine with a call to the Cray
Scientific Library. These optimizations resulted in a speedup of 7.79 for the INEEL’s largest
ATR model. Parallel scalability of the OpenMP version of the code is also discussed, and
timing results are given for other non-vector platforms.

KEYWORDS: Attila, Cray, SV1, radiation transport, vectorize, ATR

1. Introduction

1.1 INEEL
The Idaho National Engineering and Environmental

Laboratory (INEEL) is a science-based, applied engineering
national laboratory dedicated to supporting the U.S.
Department of Energy's (DOE’s) missions in environment,
energy, science and national defense. Established in 1949 as
the National Reactor Testing Station and for many years the
site of the largest concentration of nuclear reactors in the
world, the laboratory’s mission has changed and broadened
into other areas over the years, such as biotechnology,
energy and materials research, and conservation and
renewable energy.

For many years the lead laboratory for the DOE Office
of Environmental Management, in the summer of 2002 the
INEEL was given new mission direction from the Secretary
of Energy. Designated the lead laboratory for the Office of
Nuclear Energy, Science, and Technology in partnership
with Argonne National Laboratory, the new Idaho National
Laboratory will return to its historical roots as the nation’s
leading center of nuclear energy research and development.

1.2 ATR
Of the 52 nuclear reactors built at the laboratory over

the years, the Advanced Test Reactor (ATR) is one of three
still in operation (Fig. 1). The world’s premier test reactor, it
is a unique facility that is used to create a wide range of
reactor environments in which the effects of radiation on
materials and fuels may be studied. Information that would
normally require years of irradiation can be obtained after

only weeks or months of exposure in the ATR’s high flux
environment.

Figure 1: The Advanced Test Reactor in operation. The
bright blue region that curves around the cylindrical test
sections contains the fuel elements.

CUG 2004 Proceedings 1

Although the primary user of the ATR is the Naval
Nuclear Propulsion Program, there are other government,
commercial, and foreign users. Its unique four-leaf-clover
design provides nine main test spaces. Other smaller test
spaces allow additional experiments to be conducted
independently. These smaller spaces are routinely used for
the production of medical and industrial isotopes.

1.3 Motivation
In early 2003, the INEEL obtained three Cray SV1s

from the National Energy Research Scientific Computing
Center (NERSC). One of the author’s first tasks was to
evaluate the applications being run at the laboratory and
decide which ones would perform well on a vector
architecture. Any codes that could be moved to the Crays
would free up cycles on the other non-vector machines,
which were becoming rather heavily loaded.

The laboratory’s main compute servers consist of: 1)
an SGI Origin 3800 with 64 MIPS R12k 400 MHz
processors, 2) two Sun Fire 4800s, each with 12
UltraSPARC 750 MHz processors, and 3) three Linux
clusters with AMD or Intel processors, containing up to 42
dual-processor nodes. These platforms are often largely
consumed by MCNP processes. MCNP [1] is a general-
purpose radiation transport code that uses Monte Carlo
methods to solve the transport equation for neutrons,
electrons, and photons. It is one of the workhorse
applications used by nuclear engineers at the laboratory and
probably consumes more CPU cycles at the INEEL than any
other application. MCNP runs in parallel using either PVM
or MPI, and it is not unusual for a run to consume 8 or 10
processors and run for several days.

MCNP is known to be a poor performer on vector
architectures [1,2], so it is better suited to run on the clusters
or the SGI Origin. However, Attila, another radiation
transport code being evaluated for use at the laboratory,
showed much more promise as a potential candidate for the
SV1. The largest Attila ATR models developed at the
INEEL contain 2.5 million computational elements and
consume more than 7.5 Gbytes of memory. Prior to this
porting effort, these large models were run on a single node
of the AMD Opteron cluster, specially outfitted with enough
extra RAM to hold them. This not only consumed resources
that are better utilized by cluster-friendly codes like MCNP,
it also limited the users to one run at a time. If Attila could
be successfully ported to the high bandwidth, large memory
(and more lightly utilized) Crays, the engineers would be
able to make multiple runs simultaneously, hopefully with
shorter run times, and free up computational resources for
other applications.

One added benefit gained from this project was the
experience gained in vector programming and performance
tuning. The laboratory had a Cray Y-MP until the early
1990s, but it was removed and never replaced. The vector
programming expertise gained up to that point has largely
been forgotten or lost to attrition over the years. As the
laboratory prepares itself to become the leading center for

nuclear energy research and development, a renewed
emphasis on high performance computing will likely require
new expertise in the efficient utilization of vector platforms,
among end users as well as support staff.

2. Attila

2.1 Description
Attila is a radiation transport code developed by the

Transport Methods Group (CCS-4) at Los Alamos National
Laboratory [3]. Originally intended for internal research
purposes only, it was later spun off by Radion
Technologies, a for-profit company that develops and
markets the commercial version [4]. It consists of
approximately 45,000 lines of Fortran 90, with some C
preprocessor commands.

Attila is a deterministic radiation transport code,
meaning it solves the Boltzmann transport equation
analytically on a computational mesh. This is in contrast to
statistical methods such as Monte Carlo, in which explicit
transport equations are not solved, but rather large numbers
of particles are tracked individually and their average
behavior tallied. One benefit of using a deterministic code is
that the solution is calculated everywhere on the
computational mesh. Monte Carlo supplies information only
for specific locations, which must be determined and
specified prior to the calculation.

Attila is a three-dimensional discrete ordinate (SN)
code, which solves the first order form of the steady state
transport equation on an unstructured, tetrahedral mesh. The
SN approach discretizes the transport equation’s angular
dependence into a set of solid angles. A multigroup energy
discretization is used to represent energy dependence, and a
linear discontinuous finite element method is used for
spatial discretization. This results in four angular flux
unknowns per computational element [5].

This system of equations is solved using a source
iteration technique, meaning a series of source (outer)
iterations are performed until the flux solution is converged.
For optically thick problems dominated by scattering,
source iterations can take a prohibitively long time to
converge, thus some type of acceleration is required. Attila
uses a modified diffusion synthetic acceleration (DSA)
method to greatly reduce the number of source iterations
required.

One final note should be mentioned. The optimizations
described in this paper were studied over a period of several
months and three versions of Attila. However, the
discussion of code structure refers to Attila Version 3.12.0,
and all timing runs were performed again as necessary using
this version to maintain consistency.

2.2 Code Structure
The general structure of the Attila solver is outlined in

Figures 2 and 3. Subroutine OUTER performs the outer
source iteration loop, which continues until the specified
convergence criterion has been met. Within this outer loop

CUG 2004 Proceedings 2

3. Performance Analysis is another loop over the number of energy groups being
represented.

For each energy group, a call to subroutine INNER is
made. This performs a within-group scattering iteration,
which continues until the flux solution converges. Each
iteration performs a call to SOLVE_FO and, if required, a
call to DSA. Subroutine SOLVE_FO solves the transport
equation for the new angular flux moments in each element.
Subroutine DSA performs the Diffusion Synthetic
Acceleration scheme mentioned earlier. DSA can be turned
on or off through user input. Its use will not change the
solution, only the time to converge.

3.1 Test Case Descriptions
The first step in optimizing Attila was the selection of

some appropriate test cases to run Cray’s performance
analysis tools on. The Attila distribution came with example
input for a nuclear reactor benchmark case. The Attila
model, referred to here as “NEACRP,” represents a 1/8th
reactor core. It uses two energy groups and 24 angles
(discrete ordinates) in the transport calculation, and contains
3,932 elements in the computational mesh. This model is
relatively small, but it is good for initial performance tuning
due to its short run time.

The other major test case to be evaluated is the largest
ATR model built to date. It contains 2,528,838 elements,
four energy groups, and 24 angles. While too large to run in
a reasonable amount of time using the profiling tools (at
least prior to tuning), this case is most representative of the
type and size that will be used most often to model the
ATR.

Figure 2: Subroutine OUTER controls the outer (fission
source) iterations. NGROUPS is the number of energy
groups being modelled.

SUBROUTINE OUTER

DO until converged
 DO 1, NGROUPS
 .
 .
 CALL INNER
 .
 .
 END DO
END DO

SUBROUTINE INNER

DO until converged
 .
 .
 CALL SOLVE_FO
 .
 .
 CALL DSA
 .
 .
END DO

Certain key characteristics of these models are
summarized in Table 1. The variable npoints represents the
number of cell vertices in the computational mesh (four
vertices per tetrahedron), and ncells is the number of
tetrahedral elements. For problems in which DSA has been
selected, ncoeffs contains the number of non-zero
coefficients in the upper triangular portion of the DSA
operator. This number turns out to have a large impact on
the overall run time and the amount of time spent in the
DSA subroutine.

Two other smaller ATR models are also listed in Table
1. These models were run in order to check results after
various optimizations were done, but their results are not
discussed in this paper.

Table 1. Test problems and some of their key parameters

Model npoints ncells ncoeffs
NEACRP 827 3,932 5,884
ATR_small 37,016 110,823 221,868
ATR_med 244,275 1,361,682 1,884,710
ATR_large 439,695 2,528,838 3,444,470

3.2 Analysis Results
The NEACRP example problem was used for the initial

performance analysis since it could be run quickly. On the
SGI Origin the NEACRP problem ran in 34.1 s. The
original unoptimized Cray version of Attila took 99.7 s to
run on the SV1. The group 0 hardware counters indicated
that the overall code was achieving only 21.78 MFLOPS
and 80.49 MIPS, for a MFLOPS/MIPS ratio of only 0.27.
This indicated a very low degree of vectorization for the
code as a whole.

Figure 3: Subroutine INNER performs the inner (within
group) scattering source iteration. SOLVE_FO solves the
transport equation for new angular flux moments, and DSA
executes the Diffusion Synthetic Acceleration scheme, which
speeds up the iteration process.

Next, subroutine level timing was performed by
recompiling Attila with the flowtrace feature enabled. This
indicated that the subroutine that solves the transport

CUG 2004 Proceedings 3

4. Optimization equation, SOLVE_FO, was responsible for 83.9% of the
CPU time (Fig. 4). Clearly, this was the target for the
optimization effort, as any improvement here would have a
significant effect on the overall run time.

4.1 Vectorization of SOLVE_FO
Further profiling showed that the three inner loops in

SOLVE_FO were responsible for most of the CPU time
consumed in that subroutine, so they were obvious
candidates for vectorization. Examination of the loopmark
listing showed that none of them was being vectorized,
although at least one reason was obvious, calls to subroutine
LU4 in each loop.

The next two most significant subroutines were CGD
and DSA, which together accounted for only 6.6% of the
CPU time. DSA, as described previously, performs the
Diffusion Synthetic Acceleration algorithm. CGD is simply
a preconditioned conjugate gradient solver based on the
algorithm described in Ref. 6. It is called from within DSA
to solve the DSA system of equations.

SUBROUTINE SOLVE_FO

DO over angles

 DO over sweeps in angle

 DO 1-side visible cells
 .
 CALL LU4
 .
 END DO

 DO 2-sides visible cells
 .
 CALL LU4
 .
 END DO

 DO 3-sides visible cells
 .
 CALL LU4
 .
 END DO

 END DO

END DO

Figure 4: Flowview output for the unoptimized version of
Attila. These results were obtained by running the NEACRP
example problem.

A closer look at SOLVE_FO revealed the structure

outlined in Fig. 5. An outer loop cycles over the number of
angles (24 for these test cases). For each angle, a
predetermined number of sweeps is performed. During each
sweep the transport equations are solved for each of three
element types: those with one side visible, two sides visible,
or three sides visible.

The transport sweeps can be visualized by imagining
the sweeps as wavefronts travelling across the entire mesh,
roughly in the direction of the current angle [7]. This means
that ncells 4 x 4 matrices are solved for each angle, or put
another way, the transport equations for each element are
solved 24 times, once for each direction.

Figure 5: Basic structure of subroutine SOLVE_FO. The
three interior loops, which solve the transport equations for
each element, consumed the most CPU cycles and needed to
be vectorized.

This structure has implications from an optimization
point of view. Rather than having a single, high trip count
loop over the total number of mesh elements, the elements
are instead broken up over several loops. Each sweep in the
sweep loop only solves the transport equations for a subset
of the total number of elements. Furthermore, this subset is
further broken down into the three cell types across the
three inner loops. This reduces the potential average vector
length for the inner loops, but this effect should not be as
significant for the mesh sizes typical of the ATR models
described above.

The 4 x 4 coefficient matrix for its associated element

is constructed within each of the three inner loops.
Subroutine LU4 is called to perform an LU decomposition
of the coefficient matrix, and then the system of equations is
solved by forward and back substitution to yield the new
angular fluxes. LU4 uses Crout’s algorithm with partial
pivoting.

CUG 2004 Proceedings 4

After inlining the calls to LU4, the compiler still would
not vectorize the loops because of recurrences in three
arrays: AMAT(nvrtx,nvrtx), IB(nvrtx), and
PSI(nvrtx), where nvrtx is the number of vertices (4 for
tetrahedra). AMAT is the coefficient matrix for the current
element, IB is the output vector from LU4 which records the
row permutations created by the partial pivoting, and PSI
contains the new angular fluxes for each vertex.

One approach which seems to work is to promote these
arrays by adding a new dimension, so that they are
dimensioned as AMAT(nvrtx,nvrtx,ncells), IB(nvrtx,ncells),
and PSI(nvrtx,ncells). A CONCURRENT directive was also
required to convince the compiler to vectorize the loops,
and a PREFERVECTOR directive was needed to prevent
less significant inner loops from vectorizing instead. The
modified arrays are now indexed by i, the loop index, and
the appropriate array sections are passed during the call to
LU4, instead if the original arrays:

call lu4(ier, AMAT(:,:,i), IB(:,i))

This strategy comes at the cost of a lot of extra memory

used. For example, for the ATR_large test case with over
2.5 million elements, the extra dimension adds over 40
million words of required storage for these three arrays.
Still, the performance payoff is large, even with the added
storage.

A closer look at the loopmark listing revealed that, in a
different section of SOLVE_FO, the wrong loop was
vectorizing in a loop nest that accumulates angular flux
moments. An inner loop with a trip count of four was
vectorizing, so another PREFERVECTOR directive was
used to get the outer loop to vectorize over the number of
cells.

After both of these modifications were done,
SOLVE_FO went from 22.24 MFLOPS to 55.01 MFLOPS,
a 147% increase. The average vector length went from 9.32
to 21.82. This is a good improvement, although with the
relatively small mesh size the vector performance still
suffers. Overall, wall clock time decreased from 99.7 s to
63.5 s, a speedup of 1.57. Floating point performance for
the code as a whole improved from 21.78 MFLOPS to
43.32 MFLOPS.

4.2 Memory Stride Issues
Although vectorization of the three loops in

SOLVE_FO was a big first step, it still was not showing the
kind of performance that one would expect from a well-
vectorized subroutine. MFLOPS rates still seemed low,
even considering the small problem size. The performance
analysis tools gave indications of possible memory access
problems. For instance, in runs of the NEACRP problem the
group 0 counters showed the percent of clock periods
(%CP) in SOLVE_FO holding issue to be 80.83%.
Furthermore, group 1 counters showed the percent of all
CPs waiting on memory ports in SOLVE_FO to be 66.81%.
A partial run of the ATR_med test case showed 91.74% of

CPs holding issue, and 83.11% of all CPs waiting on
memory ports.

An examination of the array declarations in
SOLVE_FO revealed that in several arrays (including
AMAT and IB), either the first or first two leading
dimensions were four, and loop iterations were being
performed on the next dimension. This was resulting in
strides of either four or sixteen, both powers of two (thereby
hurting performance).

The initial reaction was to rearrange the array
dimensions such that the loop indices were iterating on the
leading dimension, giving a unit stride through memory.
This approach was eventually abandoned, because the three
loops mentioned in the last section quit vectorizing. This
was apparently because a non-contiguous section of
memory was being passed to LU4 [8] (e.g., AMAT(:,:,i)
is a contiguous array section, whereas AMAT(i,:,:) is
not). The extra processes involved in passing the non-
contiguous sections to LU4 were enough to prevent the
current inliner and optimizer from vectorizing the loops.

Another, simpler technique was used instead. The
strides were made odd by adding one to the leading
dimensions. This resulted in a net improvement, although
again at the cost of more memory being consumed. The
actual number of CPs being spent waiting on memory ports
dropped 35% (for the NEACRP case). Floating point
performance in SOLVE_FO improved from 55.01 MFLOPS
to 75.10 MFLOPS, and the overall wall clock time dropped
another 10% from 63.5 s to 56.9 s. A final look at
subroutine timings showed that SOLVE_FO now accounted
for 61.2% of total CPU time, CGD 8.6%, and DSA 7.1%.

4.3 Vectorization of DSA
Once subroutine SOLVE_FO seemed to be tuned pretty

well, it became time to try the performance tools on the
largest test case, ATR_large. Running the optimized version
of Attila containing the SOLVE_FO vectorization and
memory stride changes produced the profile shown in Fig.
6. On a mesh of this size, the vast majority of the
computational effort has been shifted to subroutine CGD,
which solves the DSA system of equations. SOLVE_FO
now used only 9.6% of the total CPU time.

Subroutine DSA only accounted for 1.8% of the CPU
time, but a quick look at the loopmark listing revealed two
loops that appeared to be vectorizable, so this routine was
tackled prior to attempting CGD. The structure of DSA is
relatively simple. There is an initial loop over ncells that
creates the DSA source vector, followed by a call to CGD
(which solves the DSA system), followed by a final loop
over ncells that solves for the DSA scalar flux correction.

The only thing preventing vectorization of the initial
loop was the accumulation of an array at the bottom in
which indirect addressing was used. The loop would
vectorize with a CONCURRENT directive, but subscript
collisions within the vector length resulted in code failure.
This problem was solved by breaking the accumulation

CUG 2004 Proceedings 5

portion into a separate loop, allowing the remainder of the
loop to vectorize.

Figure 6: Perfview output after running the large ATR
model with the optimized version of SOLVE_FO. The much
larger model spends most of its effort in the conjugate
gradient solver, CGD.

The final loop in DSA is similar to the inner loops in

SOLVE_FO. A 4 x 4 system of equations is set up and
solved for each cell, except here the loop is over ncells and
is not split up into separate loops. An additional dimension
had to be added to the coefficient matrix and solution vector
to eliminate recurrences, as was done in SOLVE_FO. This
time, a PREFERVECTOR directive was sufficient to get the
loop to vectorize, so no CONCURRENT directive was
required.

Vectorizing the two main loops in DSA increased
performance from 22.4 MFLOPS to 71.0 MFLOPS and
increased the average vector length from 59.2 to 64.

4.4 Conjugate Gradient Solver
Subroutine CGD obviously needed to be improved in

order for Attila to perform well enough to be run on the
SV1. It was achieving only 21.8 MFLOPS and consuming
87.6% of the total CPU time. Unfortunately, there was no
way to get it to vectorize as it was written. A complete
replacement would be necessary in order to get acceptable
performance.

As luck would have it, the entire CGD subroutine could
be replaced by a call to SITRSOL in the Cray Scientific
Library. Subroutine CGD is simply a preconditioned
conjugate gradient solver, and the same functionality is
supplied in SITRSOL [9,10]. The call to CGD was
commented out and replaced by calls to DFAULTS (to
assign default values to the parameter arguments for
SITRSOL) and SITRSOL. Diagonal (Jacobi)
preconditioning was selected to conform to the
preconditioning option available in Attila.

The magnitude of the speedup achieved with this
modification can best be seen by looking at the average time
per call to subroutine DSA, including the time spent in the

conjugate gradient solver. Using the CGD solver, the
average time per call for DSA was 7.06 s, and the time per
call to CGD was 1,100 s, for a total of 1,107 s per call. After
replacing CGD with SITRSOL, the time per call to DSA
was 102 s (including time spent in SITRSOL). This
represents an order of magnitude improvement in the time
spent solving the DSA equations. Wall clock time for the
entire run went from 99.0 hours to 19.8 hours for a speedup
of five.

5. Results

5.1 NEACRP
The overall speedup results for this model were not

particularly impressive, although they are a definite
improvement. The floating point performance for the entire
code increased from 21.8 MFLOPS to 59.5 MFLOPS. The
wall clock time decreased from 99.3 s to 52.1 s, for a
speedup of 1.91. The ratio of MFLOPS to MIPS increased
from 0.27 to 1.09, showing a modest improvement in vector
performance.

As mentioned previously, this model is really too small
to show good performance in Attila. A relatively large
amount of time is spent performing I/O while input files are
being read and output files are being created, compared to
the amount of time actually spent performing the transport
calculations.

Fig. 7 shows the speedup achieved with each of the
optimizations described in this paper. Most of the
improvement for a model of this size is seen by vectorizing
SOLVE_FO. Not enough time is spent in the DSA solving
routines for the latter optimizations to have as significant an
effect.

Fig. 8 shows the wall clock run times for three
platforms: the 300 MHz Cray SV1, a 400 MHz SGI Origin
3800, and a 1.8 GHz Opteron-based PC. Although much
improved, the SV1 run time for a model this small is still
not comparable to that achieved with a modern desktop PC.

1

1.2

1.4

1.6

1.8

2

orig vec odd dsa sitrsol

Speedup

Figure 7: Speedup achieved during each stage of the
optimization process running the NEACRP model. The
labels on the x-axis indicate the original, vectorized
SOLVE_FO, odd memory stride, vectorized DSA, and
SITRSOL versions.

CUG 2004 Proceedings 6

0

5

10

15

20

25

W
al

l C
lo

ck
 T

im
e

(h
rs

)

Opteron PC SV1

0

10

20

30

40

50

60
W

al
l C

lo
ck

 T
im

e
(s

)

SV1 SGI Origin Opteron PC

Figure 8: Wall clock run times for the NEACRP model. The
SV1 results are with the final optimized version. SGI and
PC results are for the original unmodified source.

Figure 10: Wall clock run times for the large ATR model.
SV1 results are with the final optimized version. The SV1 is
slightly faster for a single-processor run, approximately 20
hrs vs. 21 hrs.

5.2 Large ATR Model
5.3 Parallel Performance This model, which is typical of the kind that will be

used at the INEEL, showed a much more dramatic increase
in performance. The code improved from 22.3 MFLOPS for
the unaltered version to 136.6 MFLOPS with the final,
optimized version. The final MFLOPS/MIPS ratio was 4.34.
The most dramatic improvement was in wall clock time. It
decreased from 154.5 hrs (6.4 days) to 19.8 hrs, a speedup
of 7.79.

Attila was originally intended to be run on single-
processor desktop PCs or workstations [3], and this mode of
operation is perfectly adequate for most “typical” models,
such as the NEACRP test case. However, full-core models
of reactors such as the ATR can quickly overwhelm the
capabilities of these machines. In Version 3.12.0 of Attila,
the developers began looking at ways to run the code in
parallel. The speedup graph in Fig. 9 shows that the largest

single improvement was obtained by replacing the generic
conjugate gradient solver CGD with the optimized version
found in the Cray Scientific Library. With so much time
being spent in the DSA equation solver, it is imperative that
this portion of the code be well vectorized. This is a clear
demonstration of the utility of vendor-optimized library
routines as compared to hand-coded versions, especially for
a vector platform.

They began in an incremental fashion, using OpenMP
directives to parallelize two loops. One loop is in subroutine
OUTER, but it is in a portion of code that is not executed an
appreciable amount of time, at least for the ATR models.
The one major loop that was parallelized by the developers
is the outer loop in SOLVE_FO over the number of angles
(see Fig. 5). An OpenMP PARALLEL DO directive was
used with a static schedule to split the angles over the
number of threads. Wall clock times for the Cray and Opteron PC are

shown in Fig. 10. The SV1 is slightly faster when run on a
single Single Streaming Processor (SSP).

Parallelizing this portion of code will help increase
code speed most for those problems that spend a lot of time
in SOLVE_FO, like the NEACRP test case. Unfortunately,
ATR models of the size being run at the INEEL will not
show appreciable speedup, since most of the time is spent in
DSA.

1
2
3
4
5
6
7
8

orig vec odd dsa sitrsol

Speedup

It is for this reason that the use of the SITRSOL solver
provides another benefit beyond the single-process speedup
already observed. Since SITRSOL is multitasked as well as
vectorized [9], a greater parallel scalability is seen by
running the Cray version of Attila, especially for large
problems. Fig. 11 shows the scalability of the Cray and
Opteron-based PC versions when running the ATR_med
model.

Not only is the Opteron PC limited by low parallel
scalability, the user is also limited to two processors, since it
is a dual-processor node. The INEEL SV1s are only limited
by the current license to four processors. Fig. 12 shows the
wall clock times for both machines, for single- and multiple-
processor runs of the ATR_large model.

Figure 9: Speedup achieved during each stage of the
optimization process running the large ATR model. For a
model of this size, almost all of the speedup was obtained by
using the optimized solver in the Cray Scientific Library.

CUG 2004 Proceedings 7

Acknowledgments

1.0

1.5

2.0

2.5

3.0

1 2 3 4 8

of processors

Sp
ee

du
p

Cray SV1

Opteron
PC

The author would like to thank Bill Long and Jim
Maltby of Cray Inc. for their assistance. Bill provided
valuable suggestions for speeding up and vectorizing the
calls to the LU factorization routine, and Jim spent several
hours going over the Attila source during a site visit to the
INEEL.

This work was supported by the U.S. Department of
Energy under DOE Idaho Operations Office Contract DE-
AC07-99ID13727.

References
1. Judith F. Briesmeister, ed., “MCNPTM – A General

Monte Carlo N-Particle Transport Code,” LA-13709-M,
March 2000.

Figure 11: Parallel scalability of the medium ATR model.
The Cray version scales better, mostly due to the
parallelism built into the SITRSOL solver. 2. Jim Maltby, “Cray SV1 Performance Tutorial,”

presented at the INEEL, June 10, 2003.
3. Attila Radiation Transport Code Home Page,

http://www.lanl.gov/attila/index.html.

0

5

10

15

20

25

W
al

l C
lo

ck
 T

im
e

(h
rs

)

Opteron PC Cray SV1

1 CPU
2 CPUs
4 CPUs

4. Radion Technologies Home Page,
http://www.radiative.com.

5. J. M. McGhee and T. A. Wareing, “Attila Version 3:
User’s Manual,” 17 December 2003.

6. G. H. Golub and C. F. Van Loan, Matrix
Computations, 2nd edition, Johns Hopkins University Press,
Baltimore, MD, 1989.

7. Todd A. Wareing, et al., “Discontinuous Finite
Element SN Methods on Three-Dimensional Unstructured
Grids,” Nuclear Science and Engineering, 138, pp. 256-268
(2001).

Figure 12: The large ATR model will complete 2.2 times
faster on the Cray's four processors than the Opteron's two.

8. E-mail correspondence from Bill Long of Cray Inc.,
in response to Request for Technical Assistance #3001, 15
Aug 2003.

9. “Scientific Libraries User’s Guide,” S-2151-36, Cray
Inc., 2002. 6. Conclusions

10. M. A. Heroux et al., “A Parallel Preconditioned
Conjugate Gradient Package for Solving Sparse Linear
Systems on a Cray Y-MP,” Applied Numerical
Mathematics, 8, pp. 93-115 (1991).

The results of this optimization effort show that Attila
can be modified to produce an acceptable level of
performance on the Cray SV1. The SITRSOL sparse matrix
solver in the Cray Scientific Library produced the greatest
speedup for the large ATR model, due to the extremely
large DSA system of equations that had to be solved. In
addition, the ability of SITRSOL to run in parallel resulted
in greater scalability in the Cray version of Attila.

About the Author
Peter Cebull is an Advisory Engineer on the

HPC/visualization team at the INEEL. He has a background
in nuclear engineering code maintenance and development
and now serves as a Cray subject matter expert in support of
INEEL staff. He can be reached at INEEL, P.O. Box 1625,
MS 3605, Idaho Falls, ID 83415-3605 USA, Phone: 208-
526-1909, E-Mail: cebupp@inel.gov.

The bottom line is that the nuclear engineers at the
INEEL are now able to run their largest models in less than
half the time than they previously could. They also have the
capability to run multiple jobs simultaneously.

There is probably more that can be done to optimize
Attila, and there very well may be better ways of
vectorizing the subroutines than were used here. Now that
Attila has been demonstrated to run well on the Crays, a
larger effort to optimize the code is likely to occur.

CUG 2004 Proceedings 8

http://www.lanl.gov/attila/index.html
http://www.radiative.com/

	Introduction
	1.1 INEEL
	1.2 ATR
	1.3 Motivation

	Attila
	2.1 Description
	2.2 Code Structure

	Performance Analysis
	Test Case Descriptions
	Analysis Results

	Optimization
	Vectorization of SOLVE_FO
	Memory Stride Issues
	Vectorization of DSA
	Conjugate Gradient Solver

	Results
	NEACRP
	Large ATR Model
	Parallel Performance

	Conclusions
	Acknowledgments
	References
	About the Author

