

PERIENC

Cray Tools Current Status and Future Plans

Luiz DeRose Tools Manager Cray Inc. Idr@cray.com

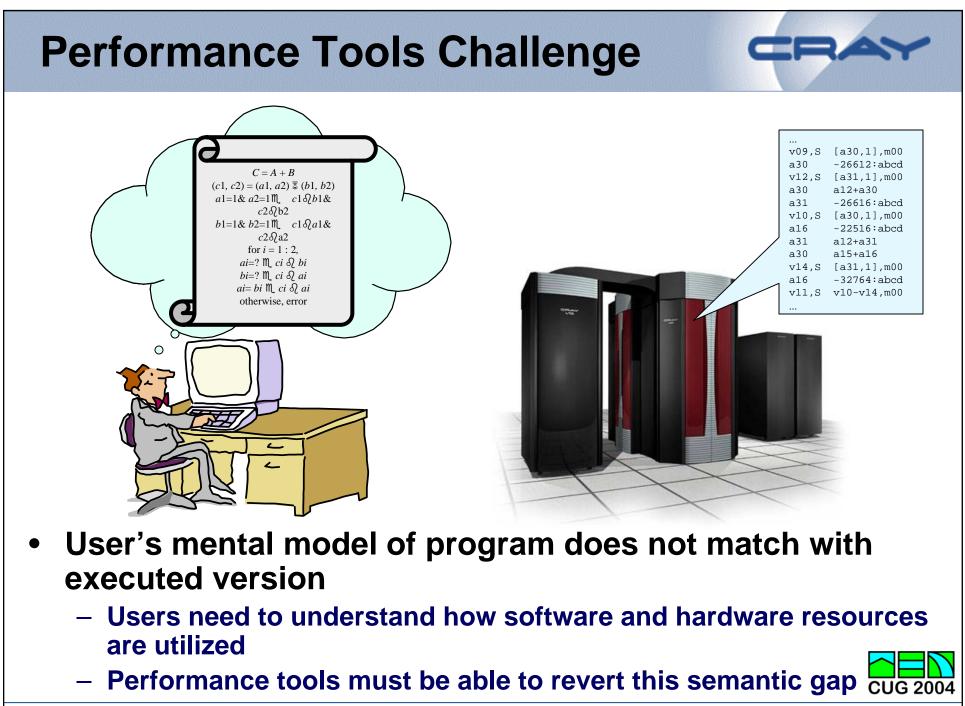
CUG 2004 – Knoxville, TN

Cray Proprietary

May 21, 2004

Outline

- Current status
 - Debugger
 - Performance Analysis Toolkit
- Future directions
- User feedback


Cray TotalView Debugger

- Version 6.3.1.0 Shipped 05/01/04
 - Feature highlights
 - CLI and GUI variants
 - Core file support (including 64 bit files)
 - PThread support for core files
 - Support for MSP and SSP
 - Viewing info for any SSP of an MSP
 - New features in 6.3.1
 - Support "aprun" launching of jobs from within the debugger
 - Support access of information from SSPs 1-3
 - New features planned for next release
 - Live PThread
 - CAF/UPC support
 - Support for vector registers

May 21, 2004

Cray PAT

- Performance analysis toolkit
 - Applied to applications for single or multiple PEs
 - Shared memory
 - Distributed memory
 - MSP mode
 - SSP mode
 - Collect data at all levels of parallelism
 - SSP
 - Process
 - Thread
 - Information
 - Call stack
 - Thread
 - Hardware performance counters

Cray PAT Components

- pat_hwpc
 - Stand-alone utility that executes an application, collect specified HW performance counter events, and writes a summary report
- pat_build
 - Utility that instruments the application
- Cray PAT run-time library
 - Transparent to the user
 - Collects performance data during execution
 - Writes data file
- pat_report
 - Utility to create a performance report
- pat_help
 - Help utility

CUG 2004

PAT_HWPC

- Collects hardware performance counters information for an application
- No instrumentation required
 - pat_hwpc [options] a.out
 - Accepts various hardware counters groups
- Results in report with raw counts and derived metrics for the whole execution
 - Hardware counters summed across threads per process

PAT_HWPC Output

Command executed: aprun -n1 ./swim					
Exit status	0				
Host name & type	water crayx1 400 MHz				
Operating system UNICOS/mp 2.4.18 05160857					
Text page size	e 16 Mbytes				
Other page size	16 Mbytes				
Start time	Thu May 20 08:52:43 2004				
End time	Thu May 20 08:52:48 2004				
Elanged time	E EE2 gogonda				

Elapsed time	5.053	seconas	
User time	3.569	seconds	63%
System time	1.596	seconds	28%

Resource usage by process and module:

PE	PID	User time	System time	Module	Memory	resident
		(seconds)	(seconds)		size	(MBytes)

0 623172 3.561109 1.549820 28 160.125000

Accounting data by process:

	Read &	Read &	Block	Raw	Run Q	Num.
	Write	Write	I/O Wait	I/O Wait	Wait	of
PE	(MBytes)	Calls	(secs)	(secs)	(secs)	Swaps

0 0.836510 7 0.001527 0.000000 0.042894 0.001341 19

8

Processor Metrics

P counter data				
CPU Seconds		3.503683	sec	
Cycles	1559.895M/sec	5465376812	cycles	
Instructions graduated	352.665M/sec	1235625287	instr	
Branches & Jumps	4.694M/sec	16445103	instr	
Branches mispredicted	0.517M/sec	1812301	misses	11.020%
Correctly predicted	4.176M/sec	14632802	misses	88.980%
Vector instructions	133.564M/sec	467965318	instr	37.873%
Scalar instructions	219.101M/sec	767659969	instr	62.127%
Vector ops	8546.749M/sec	29945097182	ops	
Vector FP adds	2919.849M/sec	10230224517	ops	
Vector FP multiplies	1873.126M/sec	6562837581	ops	
Vector FP divides etc	75.346M/sec	263987335	ops	
Vector FP misc	0.991M/sec	3471668	ops	
Vector FP ops	4869.311M/sec	17060521101	ops	100.000%
Scalar FP ops	0.016M/sec	56894	ops	0.000%
Total FP ops	4869.327M/sec	17060577995	ops	
FP ops per load		1.325	flops/l	oad
Scalar integer ops	5.018M/sec	17580836	ops	
Scalar memory refs	1.351M/sec	4733496	refs	0.037%
Vector TLB misses	0.000M/sec	1358	misses	
Scalar TLB misses	0.000M/sec	939	misses	
Instr TLB misses	0.000M/sec	338	misses	
Total TLB misses	0.001M/sec	2635	misses	
	1 20000	4651006	refs	98.257%
Dcache references	1.327M/sec	4031000	TELP	20.2570
Dcache references Dcache bypass refs	1.327M/sec 0.024M/sec		refs	1.743%

9

May 21, 2004 Cray Tools

Processor (Vector) Metrics

av 21, 2004 Crov Teolo				Luiz DoDooo (اہم ا	
	Vector Store Stride	1.898M/sec	6650880	refs		
	Vector Store Alloc					
	Vector Load Stride	1.898M/sec	6651312	refs		
	Vector Load Index		0	refs		
	Vector Load Alloc	2697.025M/sec	9449519404	refs		
	Stall VU	12.253secs	4901069010	clks		
	Stall VLSU	11.492secs	4596771918	clks		
	Syncs Instr	3.536M/sec	12388143	instr		
	Scalar FP Instr	0.016M/sec	56894	instr		
	A-reg Instr	200.926M/sec	703980416	instr		
	Average vector length		63.990			
	Total memory refs	3675.523M/sec	12877865982	refs		
	Scalar memory refs	1.351M/sec	4733496	refs	0.037%	
	Vector memory refs	3674.172M/sec	12873132486	refs	99.963%	
	Vector stores	976.896M/sec	3422733702	refs		
	Vector loads	2697.276M/sec	9450398784	refs		
	Vector int ops	1.291M/sec	4521913	ops		
	Vector shifts	0.452M/sec	1583946	ops		
	Vector logical ops	0.612M/sec	2144235	ops		
	Vector integer adds	0.227M/sec	793732	ops		

Cache & Memory Metrics

E counter data			M counter data		
Alloc requests	519.941M/sec	1821708706	Forwarded	0.138M/sec	484615
Dcache Inval Events	0.146M/sec	509828	In Remote	0.075M/sec	263732
Evictions	247.044M/sec	865563731	Inval	0.002M/sec	7429
Forwarded	0.061M/sec	212489	Nacks		0
FwdGet	0.023M/sec	79829	Noncached	301.041M/sec	1054752202
FwdReadAll	0.005M/sec	15993	PendDrop		0
FwdReadShared		0	Requests	436.178M/sec	1528229924
Inval	0.001M/sec	5132	Shared		0
Local Inval	0.108M/sec	376886	SupplyDirtyInv	0.024M/sec	83680
Misses	247.085M/sec	865707197	SupplyDirtySh	0.000M/sec	14
Nacks	0.000M/sec	2	SupplyExcl	0.027M/sec	95583
Notifies	122.907M/sec	430627872	SupplyInv	0.085M/sec	296706
Requests	526.605M/sec	1845055615	SupplySh	0.002M/sec	8627
Update		0	Trans Buffer lb hit	0.037M/sec	127896
Update Nack		0	Update		0
WriteBacks	123.843M/sec	433907781	UpdateNack	0.000M/sec	3

May 21, 2004 Cray Tools

PAT_BUILD

- Supports
 - Fortran, C, C++, CAF, UPC
 - MPI, SHMEM, OpenMP, pThreads
- Performance measurement
 - Asynchronous (interrupt-based)
 - Synchronous (trace-based)
 - Predefined function groups
- Hardware counters events from three chips
 - "P" Processor
 - "E" Cache
 - "M" Memory
- Source code mapping
 - Call stack
 - Line numbers
- API for fine grain instrumentation

PAT_BUILD

- No recompilation required
 - pat_build instruments an executable program with a single link
 - By default, the program is instrumented for an asynchronous experiment
- Execute instrumented program just as the original
- Environment variables allow control over various runtime features
 - Experiment, rate, call stack, ...
 - No need to re-instrument the program to effect different data collection
- Creates a binary experiment data file

Evaluating the Results

- pat_report analyzes data and displays a formatted textual report
 - Export data to XML or spreadsheet formats
 - Control over how and what data is displayed
 - Control over appearance of report
- Time spent at function, block, source line
- Call trees (caller-callee relationships)
- Per-process, per-thread, per-SSP granularity
- Hardware Performance counters event values

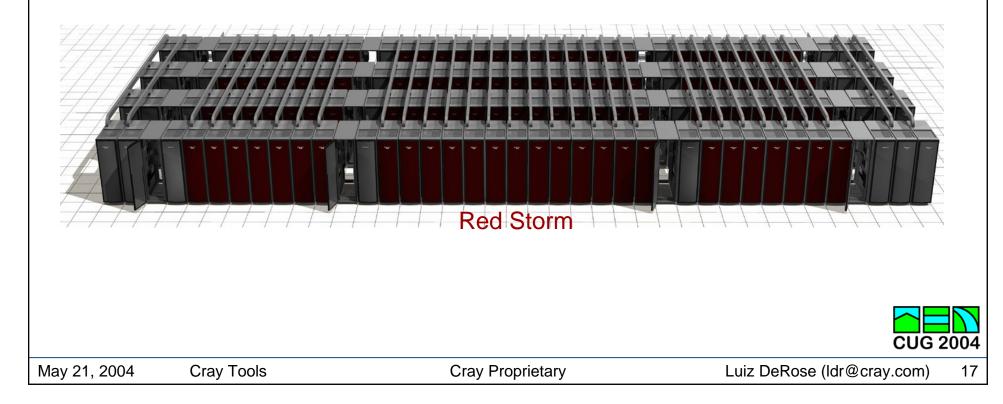
Cray PAT Future Directions

- User interface to simplify Cray PAT usage
 - New pat_run scripts for common requests (easier to remember)
 - pat_run –O mflops,vl a.out+pat
 - Meaningful way for selection of hardware counters
- More complete OpenMP and thread support
 - Information on
 - Load balance
 - Time on barriers
 - Run-time library overhead
 - Adoption of the proposed POMP Interface
- Run-time data aggregation
 - Reduce experiment data file size
 - Event profile (synchronous)
 - Equivalent to pat_hwpc report at function level
- Enhance and optimize report analysis

Collaborations

- Interactions with lead researchers in the performance measurement and analysis field
 - Jack Dongarra's group at UTK
 - PAPI port to all Cray systems
 - Bart Miller's group at U. Wisconsin
 - Dyninst port to X1, XD1, and Red Storm
 - Allen Malony's group at U. Oregon
 - TAU infrastructure on X1, XD1, and RS
 - Bernd Mohr at Forschungszentrum Jülich
 - KOJAK expert system being ported to X1
 - Jeff Vetter at ORNL
 - MPI Profiler port to X1 and RS
 - European Union APART working group

Automatic Performance Analysis: Resources and Tools



Open Research Problems

• Scalability

- Tools support for large parallel systems
- Support long running programs
- Distributed data analysis

Conclusions

- Guidelines for tools builder
 - Don't re-invent the wheel
 - Tools development is not simple
 - Support Fortran (as well as C, C++, CAF & UPC)
 - Make it simple
 - Users don't like to use complex tools
 - If one cannot learn to use it quickly it won't be used
 - Make it thread-safe!!
 - Make it scalable!!

