
Performance Study of the 3D Particle-in-Cell Code GTC on the

CRAY X1 and Earth Simulator Computers

Stéphane Ethier, Princeton Plasma Physics Laboratory, Princeton, NJ

Abstract

The 3D particle-in-cell (PIC) code GTC, developed to study plasma turbulence in magnetic confine-
ment fusion devices, has been ported to both the Earth Simulator and the CRAY X1 parallel vector
computers. The gather and scatter operations, which are inherent to the PIC algorithm, turn out to be a
challenge for both platforms. The most time consuming routines were streamed and vectorized, including
the scatter operation, which required the use of the work-vector method. Impressive performance was
achieved, although the memory footprint of the vectorized code is significantly larger than that of the
super-scalar version. One of the tests ran on 64 processors on the Earth Simulator and the CRAY X1 is
shown to be over 20% faster than a 1,024-processor run on the IBM SP Power3.

KEYWORDS: particle-in-cell, PIC, X1, Earth Simulator, gather-scatter, vectorization.

1 Introduction

The Gyrokinetic Toroidal Code (GTC) is a 3D
particle-in-cell (PIC) code developed at the Prince-
ton Plasma Physics Laboratory to study turbulent
transport in magnetic confinement fusion [1, 2].
Turbulence is believed to be the main mechanism
by which energy and particles are transported away
from the hot plasma core in fusion experiments with
magnetic toroidal devices. An in-depth understand-
ing of this process is of utmost importance for the
design of future experiments since their performance
and operation costs are directly linked to energy
losses.

The GTC simulations are computationally inten-
sive, using up to 80,000 processor-hours for certain
runs on the IBM SP Power3 at NERSC (80 hours
on 1,024 processors). However, only about 10% of
the peak performance of the Power3 processor is de-
livered to GTC during the run, and it gets worse
with the newer Power4 processor where only 5% is
delivered on average. This has been an increasingly
frustrating trend among modern superscalar com-
puters [10]. The new vector machines, such as the
CRAY X1 and the Earth Simulator, have been de-
signed to address this problem of ever decreasing ra-
tio of sustained performance over peak performance.
In this study, the GTC code was ported to both the
Earth Simulator and the CRAY X1 in order to as-
sess its performance and efficiency compared to cur-
rent superscalar machines for which GTC was de-

signed. The porting optimization details on the vec-
tor machines are described below, along with perfor-
mance results. While the highest performances were
achieved on the vector computers, GTC revealed to
be quite a challenge even for them.

2 The GTC code

GTC is FORTRAN 95 code that solves the non-
linear gyrokinetic equations [3, 4] in toroidal ge-
ometry for a system of charged particles in a self-
consistent electrostatic field, and an externally im-
posed magnetic field. The gyrokinetic equations are
essentially the Vlasov-Maxwell system of equations
for which the fast, circular motion of the charged
particles around the magnetic field lines has been
integrated out. This gyrating motion is still taken
into account but its effect is averaged over the cir-
cular path of the plasma particles. This allows for
a longer time step since the fast motion around the
field lines is not resolved. GTC makes use of a δf
scheme [5] to reduce the statistical fluctuations as-
sociated with the initial sampling of the equilibrium
distribution function. In this approach, only the per-
turbed part of the distribution function is evolved,
while the initial equilibrium part is fixed.

In the version of the code presented here, the
electrons are not treated separately but follow the
ions adiabatically. By using the PIC method, the
non-linear partial differential equation describing
the motion of the particles in the system becomes

1

a simple set of ordinary differential equations that
can be easily solved in the Lagrangian coordinates
[6, 7]. To further improve the efficiency and numeri-
cal accuracy, all calculations are done in the field-line
following coordinates, so the mesh itself follows the
magnetic field lines. The self-consistent electrostatic
field driving this motion could be conceptually cal-
culated directly from the distance between each pair
of particles using N2 calculations, but this method
quickly becomes computationally prohibitive as the
number of particles increases. The PIC approach
drastically reduces the computational complexity to
N by using a grid on which the particles deposit their
charge to a limited number of neighboring points ac-
cording to their range of influence. The electrostatic
potential is then solved everywhere on the grid us-
ing the Poisson equation, forces are gathered back
to each particle, and then used to move those par-
ticles along the characteristics (gather-push step).
The charge deposition step is complicated by the fact
that we are retaining the effect of the particles gyra-
tion around the magnetic field lines. In GTC, a par-
ticle actually represents a charged ring for which we
follow the center of its circular motion. The radius
of this motion varies with the velocity of the particle
and the magnetic field strength. Charge deposition
is done using the four-point average method [4]. We
pick four points on the particle’s circular orbit and
distribute a fraction of its charge to the neighboring
grid points (see figure). The Poisson equation is also
solved using a four-point average method [8].

The GTC code contains two levels of paral-
lelism: a 1D coarse-grain domain decomposition us-
ing message passing interface (MPI) constructs, and
a fine-grain loop- level parallelization controlled with
shared memory OpenMP directives. While the MPI
part scales linearly, the loop-level parallelism effi-
ciency depends on the amount of work in the parallel
loops. This efficiency can go up to 98% in the case
of large problem sizes. In this work, only the MPI
model was used. The limited stay at the Earth Sim-
ulator Center did not allow enough time to study
the OpenMP model. Preliminary tests revealed a
significant increase in memory usage when using the
OpenMP. Also, the CRAY X1 already implements
streaming at the MSP level, which competes directly
with OpenMP loop-level parallelism. However, it is
possible the use OpenMP to further split the work
between all the MSPs or SSPs on each X1 node but
this has not been explored yet.

The most computationally intensive parts of
GTC are the charge deposition and gather- push
steps. Both involve large loops over the number of

particles, which can reach several million per domain
partition. When running with MPI only on super-
scalar architecture, the percentage of time spent in
these two sections is almost equally split and totals
about 80%. The time spent in the charge deposi-
tion step is usually a percent or two higher than the
gather-push step. The remaining 20% is split be-
tween solving the Poisson equation (7%), doing MPI
communication, field evaluation, smoothing, and di-
agnostics. Communication time is usually between
3 to 9% depending on the type of interconnect and
the speed and number of processors used for the run.

3 Porting GTC to the vector
computers

3.1 The Earth Simulator and SX-6

The GTC vectorization work started on the single-
node SX-6 at ARSC [9] as part of an LBNL project
on comparing modern vector computers to current
superscalar architecture [10]. Since both the SX-6
and the Earth Simulator (ES) share the same com-
piler and operating system, most of the porting work
for the ES could be done on the single-node machine.
The SX-6 has a good and mature FORTRAN com-
piler with a very useful loopmark listing that helps
identify the vectorized and unvectorized parts of the
code. The initial porting was fairly easy although
some special compiler options were needed to make
the code run (e.g. ”-Wf’-pvctl vwork=stack”). Ini-
tial performance was very low since a very few loops
were vectorized. By profiling the code with the ”-
ftrace” compiler option, it became clear that the
charge deposition routine was again the most time
consuming routine.

While being the basis for the success and power
of the PIC method, the grid-based charge deposition
operation is also the source of the PIC codes limited
processor efficiency observed on all superscalar and
vector computers. Randomly localized particles de-
posit their charge on the grid, causing a low cache
reuse on cache-based architecture since two succes-
sive stores to the grid array are usually in different
cache lines. This effect is even more damaging on
vector systems since two or more particles can con-
tribute to the change at the same grid point, creating
a memory dependency that prevents vectorization.
Fortunately, several methods have been developed to
address this issue during the past two decades. Our
approach uses the work-vector method [11], where
a temporary copy of the grid array is given an ex-
tra dimension corresponding to the vector length.

2

Each vector operation, acting on a given data set in
the register, writes to a different memory address,
entirely avoiding memory dependencies. After the
main loop, the results accumulated in the work-
vector array are gathered to the final grid array.
The only drawback of this method is the increase
in memory footprint. The final version, including
other temporary arrays created by the compiler, has
a memory usage 2 to 8 times higher than the su-
perscalar version of the code. However, full vector-
ization of the most important loops in this routine
was achieved and performance increased dramati-
cally. Other methods address this memory depen-
dency problem by sorting the particles [12, 13], in-
creasing the amount of computation instead of mem-
ory, and resulting in a longer time to solution com-
pared to the work-vector method.

Other improvements to the charge deposition
routine consisted of eliminating some memory bank
conflicts caused by an access concentration to some
particular addresses. This arises because the same
elements of a few small 1D arrays are accessed re-
peatedly inside the same loop. This can be viewed
as good cache optimization on a cache-based archi-
tecture, but has the opposite effect on the cache-less
memory architecture of the SX- 6. A memory bank
has a finite busy time and bank conflicts arise when
a bank is accessed before the busy time from the last
access is over. Doing this repeatedly leads to poor
memory performance. Use of the ”duplicate” com-
piler directive alleviated this problem by instruct-
ing the compiler to create multiple copies of chosen
1D arrays across several memory banks. This way,
the same array element can be read from different
memory banks, effectively hiding the latency of the
access time. This method significantly reduced the
bank conflicts in the charge deposition routine and
increased its performance by 37%. However, it fur-
ther increased the memory footprint of the code.

Optimization changes to other subroutines were
not nearly as extensive as what was done in the
charge deposition routine. For example, adding a
single compiler directive along with inverting the di-
mensions of a few arrays was sufficient to achieve
99.4% of vector operation ratio with a nearly per-
fect average vector length of 255.9 in the gather-
push routine. During the limited time spent at the
Earth Simulator Center, the last version of the code
achieved an overall vector operation ratio of 98%
with an average vector length of 241 on the most
efficient tests.

3.2 The CRAY X1

As a start, the Earth Simulator version of GTC was
put on the CRAY-X1 and compiled without changes.
The compilation in MSP mode was straightforward
and the default options did not make the code crash
as in the SX-6 case. The loopmark listing generated
by the compiler was very informative. The use of the
work-vector method in the charge deposition routine
was just as necessary on the X1 as on the ES to
achieve full vectorization of the scatter loop (charge
deposition). In MSP mode, this loop also streams
nicely, although a few directives had to be inserted
to allow it. The dimensions of the work-vector array
for the scatter loop are the same on both machines
despite the fact that the vector length on the X1 is
64 compared to 256 for the ES. The scatter loop is
being split in 4 streams and each individual stream is
being vectorized, so we need 4x64 copies of the grid
array to avoid all possible memory dependencies in
the loop.

After discovering that the FORTRAN intrinsic
function ”modulo” was preventing the vectorization
of an important loop in the gather-push routine, it
was replaced by an equivalent but vectorizable state-
ment using ”mod”. By adding a compiler directive
to prevent the vectorization of a short inner loop,
the gather-push routine achieved the highest perfor-
mance of all the subroutines in the code, which was
also the case on the Earth Simulator. However, the
most time consuming routine on the X1 became the
”shift” subroutine, which was unexpected since this
routine had a relatively low percentage (11%) of run
time on the ES for the same test case. It was now us-
ing more than 54% of the time on the X1. This sub-
routine verifies the coordinates of newly moved par-
ticles to determine whether they have crossed a sub-
domain boundary and therefore require migration to
another processor. The main loop over the particles
in this routine contained nested ”if” statements that
prevented vectorization of this loop on both the ES
and the X1. However, the non-vectorized shift rou-
tine accounted for significantly more overhead on the
X1 than on the ES. Even though both architectures
have the same relative scalar to vector peak perfor-
mance ratio (1/8), scalar loops can incur an even
larger penalty on the X1. In the case of a scalar
loop that cannot be streamed, only one of the four
SSP scalar processors within an MSP does useful
work, resulting in an effective scalar to vector ratio
of (1/32). By converting the nested ”if” statements
into two successive condition blocks easily recogniz-
able by the compiler, the main loop now streamed
and vectorized, decreasing the percentage of time

3

spent in the routine from 54% to only 4%. This
change has not been implemented on the Earth Sim-
ulator but it certainly would have a positive effect
as well, although not as dramatic as for the X1.

At this point, the best test case on the X1 has a
99.7% vector operation ratio with an average vector
length (AVL) of 62.4 (perfect AVL is 64).

4 Performance results

Table 1 shows the performance numbers of 2 GTC
test cases ran on 32 and 64 processors. The first
case uses 10 particles per grid cell, which is the nor-
mal value for production runs, and the second case
uses 100 particles per grid cell, a much higher resolu-
tion that improves the overall statistics of the sim-
ulation but can be prohibitive on super-scalar ar-
chitectures. The grid dimensions are the same for
all cases. The same tests were ran on 4 different
platforms: the IBM SP Power3 at NERSC, which is
the platform currently used for the GTC production
runs, the SGI Altix at ORNL, the Earth Simulator
computer in Yokohama, Japan, and the CRAY-X1
at ORNL. The performance numbers shown in table
1 are based on the Earth Simulator results. Since it
is difficult to get consistent values for the number of
floating point operation per second between vector
and scalar machines, times to solution are used in-
stead. The time to solution, or wall clock time, is
a better indicator of the overall performance of the
computer since it includes all the overheads due to
communication latency, maximum bandwidth, sys-
tem work, etc. However, we express the wall clock
time ratios in terms of a valid baseline flop count
since it adds another level of performance informa-
tion.

As the table show, GTC runs 4 to 11% faster
on the CRAY-X1 than on the Earth Simulator, al-
though there is a case for which the Earth Simu-
lator has a 4% lead. As noted above, the version
of the code that ran on the Earth Simulator did
not include the vectorized ”shift” subroutine, which
gives an advantage to the X1. The Mflops num-
bers given by the performance measuring tool on
the X1 are actually higher than those shown in the
table. The reason for this is that most tools mea-
sure flops per second in terms of cpu time instead
of wall clock time. It is known that the MPI imple-
mentation on the X1 has a larger overhead than the
one on the ES, and this accounts, in large part, for
the lower efficiency. GTC would benefit from using
lower overhead communication software such as Co-
array FORTRAN, which is known to have a much

lower latency on the X1. In terms of cpu time, the
best efficiency achieved by GTC on the Earth Sim-
ulator was 1344 Mflops/sec per processor, or 17% of
theoretical peak performance. On the X1, this num-
ber was 1871 Mflops/sec per processor, or 15% of
peak if we take 12800 Mflops/sec as the maximum
performance of an MSP. However, GTC runs in sin-
gle precision (4-byte floats) and the theoretical peak
for an MSP running a single precision code is twice
that of a double precision code, although this cannot
be achieved since the memory bandwidth is not suf-
ficient. The gather/scatter operations in GTC make
it even harder for the compiler to take advantage of
this extra capability.

Both the ES and the X1 are from 6 to 11 times
faster than the IBM Power 3 when running the same
GTC tests. The 100-particles per cell case was also
run on the Power3 in hybrid mode MPI/OpenMP
with a total of 1,024 processors. This is how GTC
is run for large production simulations. Even there,
the 64-processor ES and X1 runs were still about
20% faster for the chosen test, showing the im-
pressive performance of the vector processors. The
Power 3 is a rather old processor by now so it is prob-
ably more appropriate to compare with the more re-
cent Itanium 2 processor, which is coupled to a very
fast and low latency NUMA-Link interconnect in the
SGI Altix. Even there, GTC runs between 3.2 and
4.5 times faster on the ES and the X1 compared to
the Altix,

As it stands at this point, GTC runs with the
highest efficiency on the Earth Simulator computer
although the CRAY-X1 has the shortest time to so-
lution for most of the tests. In spite of that, the large
amount of extra memory used by the vectorized ver-
sion of the code on both these computers limits the
problem size that can be run, especially on the Earth
Simulator since it has only 16GB of memory per
node (8 cpus). One solution would be to split the
problem size even more by adding another dimen-
sion of domain decomposition to the code, but this
is a non-trivial task that requires major code mod-
ifications. Table 1 shows that by going from 32 to
64 processors when keeping the problem size fixed,
the performance on the Earth Simulator decreases
by 7% in one case and 13% in the other. These
numbers are even larger for the X1. The lower per-
formance is mainly due to smaller loop sizes rather
than poor MPI scaling. The super-scalar machines
are not nearly as sensitive to this problem size split-
ting since they show a fairly constant performance
in all the tests. Moreover, the hybrid GTC model is
not yet functional on the ES and the X1 computers

4

Table 1: GTC per processor performance for 32 and 64-processor runs at 2 resolutions: 10 and 100 par-
ticles per cell. The Mflops/sec/cpu for the Earth Simulator serve as the reference for all other platforms.
The numbers are actually indicative of the ratios of wall clock times, which include all overheads due to
communication, system times,etc.

Part #procs Power3 Altix Earth Simulator CRAY X1
cell MF/s/cpu MF/s/cpu MF/s/cpu AVL MF/s/cpu AVL
10 32 135 290 961 209.87 1000 58.63
10 64 132 257 835 184.18 803 56.46
100 32 135 333 1344 240.73 1496 62.38
100 64 133 308 1245 228.48 1359 61.72

but works fine on the IBM Power 3.

5 Conclusion

The 3D particle-in-cell code GTC was ported to both
the Earth Simulator and the CRAY-X1. Several
modifications to the code were required in order to
achieve a high percentage of vectorization (>98%).
One critical change was to use of the work-vector
method to eliminate memory dependencies in the
scatter loop that forms the core of the charge depo-
sition step in PIC codes. Once these modifications
were in place, impressive GTC performance was at-
tained on both the Earth Simulator and the CRAY-
X1.

Acknowledgements

The author would like to thank Dr. Leonid Oliker of
LBNL for the collaboration that lead to this work.
The author would also like to thank the staff of the
Earth Simulator Center, especially Dr. T. Sato, S.
Kitawaki and Y. Tsuda, for their assistance during
his visit; D. Parks and J. Snyder of NEC America
for their help in porting applications to the ES. Also,
many thanks to Dr. J. Schwarzmeier and N. Wich-
mann of CRAY for their help in porting GTC to the
CRAY X1. This work was supported by US DOE
Contract no. DE-AC020-76-CH03073 and in part by
the DOE SciDAC Plasma Microturbulence Project.

References

[1] Z. Lin et al., Science 281, 1835 (1998).

[2] Z. Lin, S. Ethier, T. S. Hamh, and W. M. Tang,
Phys. Rev. Lett.88, 195004 (2002).

[3] W.W. Lee, Phys. Fluids 26, 556 (1983).

[4] W.W. Lee, J. Comp. Phys 72, 243 (1987).

[5] S.E. Parker and W. W. Lee, Phys. Fluids B 5,
77 (1993).

[6] R.W. Hockney and J.W. Eastwood, Com-
puter Simulation Using Particles, McGraw Hill
(1981).

[7] C.K. Birdsall and A.B. Langdon, Plasma
Physics via Computer Simulation, IOP Publish-
ing (1991).

[8] Z.Lin and W.W. Lee, Phys.Rev. E 52, 5646–
5652 (1995).

[9] Arctic Region Supercomputing Center,
http://www.arsc.edu

[10] L. Oliker et al., in Proceedings SC’03 (2003)

[11] A. Nishigushi, S. Orii, and T. Yabe, J. Comp.
Phys. 61, 519 (1985).

[12] E.J. Horowitz, J. Comp. Phys. 68, 56-65
(1987).

[13] D.V. Anderson and D.E. Shumaker, Comp.
Phys. Comm. 87, 16-34 (1995).

5

