
Performance Study of the 3D Particle-in-
Cell Code GTC on the Cray X1

Stéphane Ethier
Princeton Plasma Physics Laboratory

CUG 2004
Knoxville, TN
May 20, 2004

Work Supported by DOE Contract No.DE-AC02-76CH03073 and
by the DOE SciDAC Plasma Microturbulence Project.

Work done in collaboration with LBNL Leonid Oliker, lead P.I. for
the benchmarking project on Advanced Vector Architectures.

Magnetic Confinement Fusion

The Ultimate
Source of
Energy!

Importance of Turbulence in
Fusion Plasmas

• Turbulence is believed to be the mechanism for cross-
field transport in magnetically confined plasmas:
– Size and cost of a fusion reactor determined by particle and

energy confinement time and fusion self-heating.

• Plasma turbulence is a complex nonlinear phenomenon:
– Large time and spatial scale separations similar to fluid

turbulence.
– Self-consistent electromagnetic fields: many-body problem
– Strong nonlinear wave-particle interactions: kinetic effects.
– Importance of plasma spatial inhomogeneities, coupled with

complex confining magnetic fields, as drivers for
microinstabilities and the ensuing plasma turbulence.

The Gyrokinetic Toroidal Code
GTC

• Description:
– Particle-in-cell code (PIC)
– Developed by Zhihong Lin (now at UC Irvine)
– Non-linear gyrokinetic simulation of microturbulence [Lee,

1983]
– Fully self-consistent
– Uses magnetic field line following coordinates (ψ,θ,ζ)

[Boozer, 1981]
– Guiding center Hamiltonian [White and Chance, 1984]
– Non-spectral Poisson solver [Lin and Lee, 1995]
– Low numerical noise algorithm (δf method)
– Full torus (global) simulation

Gyrokinetic Toroidal Code (GTC)

• 3D particle-in-cell code solving gyrokinetic Vlasov equation in
toroidal geometry.

• Real space iterative solver for gyrokinetic Poisson’s equation.
• Low noise df method: ideal for load balance considerations.
• Global code (general geometry torus with shaped plasmas as

opposed to a flux tube).
• Electrostatic approximation with adiabatic electrons (currently

being upgraded to non-adiabatic electrons).
• Include spatial(E x B)- and velocity-space nonlinearities.
• Written in Fortran 90/95

Gyrokinetic approximation for
low frequency modes

• Gyrokinetic ordering

• Gyro-motion: guiding center drifts + charged ring
• Gyrophase-averaged 5D kinetic (Vlasov) equation

1~

1~~~ //

ρ

ρφρω

⊥

<<
Ω
k

kT
e

L

Particle-in-cell (PIC) method

• Particles sample distribution function (markers).
• The particles interact via a grid, on which the potential

is calculated from deposited charges.

The PIC Steps
• “SCATTER”, or deposit,

charges on the grid (nearest
neighbors)

• Solve Poisson equation
• “GATHER” forces on each

particle from potential
• Move particles (PUSH)
• Repeat…

Advantages of PIC

• Naturally includes all nonlinearities
• Scales as N instead of N2.
• Equations of motion for the particles along the characteristics:

– We solve ODEs instead of PDEs

ff

f
fm

q
m
q

dt
d

m
q

dt
d

m
q

dt
d

j

k
j

jj

/with w

v
1B̂

R
x̂B̂

R
w

B̂
R

v

B̂
R

-B̂vR

,R||

0

0

||

 ||

δ
µ

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⋅
∂
Ψ∂

⎟
⎠
⎞

⎜
⎝
⎛−⋅×

∂
Ψ∂

⎟
⎠
⎞

⎜
⎝
⎛

Ω
−=

⋅
∂
Ψ∂

⎟
⎠
⎞

⎜
⎝
⎛−=

⎟
⎠
⎞

⎜
⎝
⎛ ×

∂
Ψ∂

⎟
⎠
⎞

⎜
⎝
⎛

Ω
=

Charge Deposition for charged rings:
4-point average method

Classic PIC 4-Point Average GK
(W.W. Lee)

Charge Deposition Step (SCATTER operation)

GTC

Poisson Equation Solver

• Done in real space (iterative solver)
• Four or eight-point average method

() ()

potential averaged-gyrophase
 second theis ~ where

4~
2

Φ

−=Φ−Φ ei
D

nneπ
λ
τ

[Z. Lin and W. W. Lee, Phys.Rev. E 52, 5646--5652 (November 1995).]

GTC mesh and geometry:
Field-line following coordinates

ζ

θ Ψ

(Ψ,α,ζ) ⇒ α = θ − ζ/q

Saves a factor of about
100 in CPU time

Domain Decomposition

• Domain decomposition:
– each MPI process holds a toroidal section
– each particle is assigned to a processor according to its

position

• Initial memory allocation is done locally on each
processor to maximize efficiency

• Communication between domains is done with MPI
calls (runs on most parallel computers)

Efficient Communications

STEP 1 STEP 2

2nd Level of Parallelism:
Loop-level

MPI_init

MPI process MPI process MPI process MPI process

MPI_finalize

OpenMP
Loop

OpenMP
Loop

Start
threads

Merge
threads

Computational Facts about GTC

• Only 5000 lines.
• Written in standard Fortran 90/95.
• Highly portable. GTC runs on most parallel computers

as long as the MPI library is available.
• Part of the NERSC benchmark suite of codes to

evaluate new computers.
• Runs in single precision (4-byte REALs)
• Only 5 to 10% of wall-clock time spent in

communications for non-linear runs.
• Uses FFTs only for diagnostics and mode decoupling in

linear runs.
• Typical runs done on 1024 processors on IBM SP

Power3 (Seaborg) at NERSC.

GTC vectorization work

• Started on the single-node CRAY/NEC SX-6 at ARSC
• Porting GTC was very easy although the first tests on a

single processor gave a very low performance
• Real work starts: profiling, vectorizing, optimizing,

test, and… repeat
• Multi-processor optimization done on to the Earth

Simulator and CRAY X1

GTC’s most time-consuming
routines on vector computers

• Charge deposition on the grid ~40% (“scatter” operation)
– Not very cache-friendly
– The particles can be anywhere in the volume
– Most challenging routine to vectorize/optimize
– ~42% of cpu time on Power3/4

• Particle push ~35% (“gather” operation + ODE solving)
– The gather operation is more efficient than the scatter operation but needs many

non-sequential memory access (reads).
– Was easily vectorized after removing a conditional test that included an I/O

statement.
– ~40% of cpu time on Power3/4

• Poisson solver ~15%
– Some modifications to improve memory access…
– A bigger percentage of compute time in next version of the code
– ~ 7% of cpu time on Power3/4

Vectorization challenge for PIC:
Scatter operation

• The charge deposition step (scatter operation) writes to the
charge accumulation array in a random fashion (particle
positions are random), producing dependencies and memory
conflicts whenever 2 or more particles have a common
neighboring grid point this prevents vectorization

• In 1D, the charge deposition step with linear interpolation looks
like this:
do i=1,nparticles

x = particle_position(i)
ix_grid = int(x)
dx = x – real(ix_grid)
charge(ix_grid) = charge(ix_grid)+q*(1-dx)
charge(ix_grid+1) = charge(ix_grid+1)+q*dx

end do

Indirect addressing!
Potential Conflicts

Avoiding memory dependencies
in the scatter operation

• Remove memory conflicts by having a copy of the
charge accumulating array for each element in the
vector register
– Achieves 100% vectorization!…
– …But uses a lot of memory
– Still have to do a lot of random reads and writes to memory.

• We could also sort the particles according to their
positions… but the overhead of the sorting routine
would have to be taken into account.
– More Flops… but also longer time to solution.

Avoiding memory dependencies:
The work-vector method (Nishiguchi ‘85)

Example of loop with indirect addressing similar to charge deposition:
DO i=1,np

charge(ix(i))=charge(ix(i)) + q(i)
END DO

Fully vectorizable loop using multiple copies (vector length of 256):
ALLOCATE(charge_tmp(256,ngrid)) Uses 256*ngrid*sizeof(charge_tmp)
DO i=1,np,256 of extra memory! (can be 1GB)

DO j=1,min(256,np-i+1)
charge_tmp(j,ix(i+j-1))=charge_tmp(j,ix(i+j-1)) + q(i+j-1)

END DO
END DO
DO i=1,256

DO ig=1,ngrid
charge(ig)=charge(ig) + charge_tmp(i,igrid)

END DO
END DO

Single Processor Performance:
SX-6 vs. IBM Power 3/4

Processor
Max
speed

(Gflops)

GTC test
(Mflops)

Efficiency
(real/max)

Relative
speed

(user time)

12 % 1

1.9

5.2

6 %

9 %

Power3
(Seaborg)

1.5 173.6

Power4
(Cheetah)

5.2 304.5

SX-6
(Rime)

8.0 715.7

Mflops/sec given by hpmcount on Power3 and Power4,
and by FTRACE on SX-6

Cache-less memory access issues
on the SX-6 and ES

• Better memory access is the secret to higher performance
• True for STORING to memory as well as FETCHING from it!

do m=1,mi
psitmp=zion(1,m)
thetatmp=zion(2,m)
zetatmp=zion(3,m)
rhoi=zion(6,m)*smu_inv
r=sqrt(2.0*psitmp)
ip=max(0,min(mpsi,int((r-a0)*delr+0.5)))
jt=max(0,min(mtheta(ip),int(thetatmp*pi2_inv*delt(ip)+0.5)))
ipjt=igrid(ip)+jt
wz1=(zetatmp-zetamin)*delz
…

Duplicate small arrays like “igrid” and “mtheta”: !$duplicate
37% improvement on chargei, but uses even more memory…
*** Small vectors can be cached on the CRAY X1!!

Repeatedly accessing the same
memory bank before the bank busy

time is over from the last access
leads to poor memory performance!

Vector performance of main routines
on the Earth Simulator

ORIGINAL CODE BEFORE MODIFICATIONS:

PROG.UNIT EXCLUSIVE MFLOPS V.OP AVER. BANK
TIME[sec](%) RATIO V.LEN CONF

--------- --------------- ------ ----- ----- ------
chargei 282.677(54.4) 62.0 0.65 98.1 0.0000
pushi 125.211(24.1) 320.1 67.51 196.8 4.3336
poisson 57.878(11.1) 418.9 94.26 107.2 0.3158

CODE AFTER MODIFICATIONS TO CHARGEI, PUSHI, POISSON:

PROG.UNIT EXCLUSIVE MFLOPS V.OP AVER. BANK
TIME[sec](%) RATIO V.LEN CONF

--------- --------------- ------ ----- ----- ------
chargei 89.924(33.3) 1314.3 99.65 248.1 6.5002
pushi 93.877(34.7) 2426.6 99.38 255.9 8.8139
poisson 26.239(9.7) 918.1 99.71 252.7 3.2485

Note: the 2 tests do
not have the same
number of time steps
so the times are
different

Total = 1.412 Gflops per proc

What about the CRAY X1?

• Same vectorizations apply except for the !duplicate
directive trick

• Easier to prevent vectorization of small inner loops
• Also needs the work-vector method with the same

dimensions of 256:
– 4 streams x 64 (vector length)
– Uses as much extra memory as the Earth Simulator

• The Fortran “modulo” function prevented vectorization
– No big deal… was changed for equivalent “mod” statement

• New dominant routine: shifti
– 54% of the time spent in that routine according to “pat”
– Was only 11% on the ES

The culprit in shifti

• “Unstreamed” and “unvectorized” loop due to nested if
blocks:

do m=m0,mi
zetaright=min(2.0*pi,zion(3,m))-zetamax
zetaleft=zion(3,m)-zetamin
if(zetaright*zetaleft > 0)then

zetaright=zetaright*0.5*pi_inv
zetaright=zetaright-real(floor(zetaright))
msend=msend+1
kzi(msend)=m
if(zetaright < 0.5)then

msendright(1)=msendright(1)+1
iright(msendright(1))=m

else
msendleft(1)=msendleft(1)+1
ileft(msendleft(1))=m

endif
endif

enddo

Why such a large impact?

• Same scalar to vector peak performance ratio
• Earth Simulator processor:

– 8 Gflops/s vector processor (500MHz X 8 pipes X 2 flops/cycle)
– 1 Gflops/s scalar processor (500MHz X 2 flops/cycle)
– Scalar to vector peak performance ratio = 1/8

• CRAY X1 SSP:
– 3.2 Gflops/s vector (800MHz X 2 pipes X 2 flops/cycle)
– 0.4 Gflops/s scalar (400 Mhz X 1 flop/cycle)
– Scalar to vector peak performance ratio = 1/8

• However, in MSP mode, a loop that does NOT stream and
does NOT vectorize uses only 1 of 4 SSPs, giving an
effective scalar to vector ratio of only 1/32!

New loop in shift

!dir$ preferstream
do imm=1,4

!dir$ prefervector
do m=(imm-1)*mi/4+1,imm*mi/4

zetaright=min(2.0*pi,zion(3,m))-zetamax
zetaleft=zetamin-zion(3,m)
alpha=pi2*aint(1.0-pi4_inv*zetaleft)
beta=pi2*aint(1.0-pi4_inv*zetaright)
kappa=pi2*aint(1.0+zetaleft*zetaright*pi2sq_inv)
aright=(alpha+zetaleft) - (beta+zetaright) - kappa
aleft=(alpha+zetaleft) - (beta+zetaright) + kappa
if(aright > 0.0)then

msend_r(imm)=msend_r(imm)+1
kzi_r(msend_r(imm),imm)=m

endif
if(aleft < 0.0)then

msend_l(imm)=msend_l(imm)+1
kzi_l(msend_l(imm),imm)=m

endif
enddo

enddo

Did it work?

• Yes, the overall time spent in shifti went from 54% to
only 4%!!

• This new algorithm has not been tested on the Earth
Simulator but will certainly have a positive effect as
well, although not as dramatic.

Results: Flops/sec count based
on CPU time

16 32 64
Number of processors (or MSPs)

0

20

40

60

80

100

Pe
rf

or
m

an
ce

 (
G

fl
op

s/
se

c)

X1
ES
P4
P3

40 Particles per Cell

Cray X1 is the
fastest!
ES scales
somewhat better

Test case
- 2,076,736 grid pts
- 100 time steps

Results: Inverse of wall clock time

16 32 64
Number of Processors (or MSPs)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

In
ve

rs
e

of
 w

al
l c

lo
ck

 ti
m

e
(s

ec
-1

)

X1
ES
Altix
P4
P3

40 Particles per Cell

Scaling

• As the number of processors increases, the domain decomposition
reduces the size of the vector loops. The observed scaling is mainly
due to a decrease in vector efficiency caused by the smaller loops
rather than poor MPI communications.

• Fastest per-processor performance of any tested architecture so far.

The 64-processor test with 100 particles per cell on
the Cray X1 and the Earth Simulator runs >1.20

times faster than the same test run on 1024 cpus on
the Power 3 Seaborg!!

The numbers…

2,076,736 grid pts

Power 3 Power4 ES Cray X1Part
cell Mflop/s/P %peak Mflop/s/P tES/tX1

1223 1.04
0.96

1.13
1.09

973

1871

961

1712

12.010
10

100
100

64 130 6.3 279 3.0 823 10.3

32 135 9.9 281 4.8 1344 16.8
15.61245

Mflop/s/P

280

274

Mflop/s/P

134

133

P
tP3/tES tP4/tES

32 7.2 3.4

64 9.4 4.5

• Single processor efficiency now at 18% of peak
• ES and X1 10 times faster than Seaborg

tES: wall clock time on the ES
tX1: wall clock time on the Cray X1

tP3: wall clock time on the Power 3
tP4: wall clock time on the Power 4

Results: Average vector length
and vector operation ratio

ES Cray X1Part
cell Mflop/s/P AVL VOR Mflop/s/P AVR VOR

98.14 95.29
94.00

96.83
96.52

97.48

98.85
98.59

56.6
56.5

62.4
61.7

1223
973

1871
1712

10
10

100

961

100

209.9
64 823 184.2

32 1344 240.7
228.51245

P

32

64

• Better performance with a higher number of particles per cell

Results: Flops/sec for higher
particle resolution

0 20 40 60 80 100
Number of particles per cell

0

20

40

60

80

100

120
Pe

rf
or

m
an

ce
 (

G
fl

op
s)

X1
ES
P4
P3

64-Processor/MSP test runs

Memory used by the vectorized
version of GTC (per processor)

0 20 40 60 80 100
Number of particles per cell

0

500

1000

1500

2000

M
em

or
y

pe
r

C
PU

 (
M

B
yt

es
)

ES-32p
ES-64p
P3-32p
P3-64p

• For micell=10
memory on the
ES is up to 8
times more than
one the Power 3!

• It gets better as
the number of
particles per cell
increases

Conclusions

• Particle-in-cell is a very powerful method to study plasma micro-
turbulence but it is a challenge to all types of processors because of
its gather/scatter operations.

• However, let’s not forget the most important: time to solution for a
given resolution/accuracy!

• The modifications made to the code have been very successful but
require a lot of extra memory, from 2 to 8 times what is used by the
version running on the Power 3. Sorting may be the way to go…

• Need to get the OpenMP going as the next step.
• Try out Co-Array Fortran…
• The X1 has the fastest per-processor performance of any

architecture tested so far!!

	Performance Study of the 3D Particle-in-Cell Code GTC on the Cray X1
	Magnetic Confinement Fusion
	Importance of Turbulence inFusion Plasmas
	The Gyrokinetic Toroidal CodeGTC
	Gyrokinetic Toroidal Code (GTC)
	Gyrokinetic approximation forlow frequency modes
	Particle-in-cell (PIC) method
	Advantages of PIC
	Charge Deposition for charged rings:4-point average method
	Poisson Equation Solver
	GTC mesh and geometry:Field-line following coordinates
	Domain Decomposition
	Efficient Communications
	2nd Level of Parallelism:Loop-level
	Computational Facts about GTC
	GTC vectorization work
	GTC’s most time-consuming routines on vector computers
	Vectorization challenge for PIC:Scatter operation
	Avoiding memory dependenciesin the scatter operation
	Avoiding memory dependencies:The work-vector method (Nishiguchi ‘85)
	Single Processor Performance:SX-6 vs. IBM Power 3/4
	Cache-less memory access issueson the SX-6 and ES
	Vector performance of main routineson the Earth Simulator
	What about the CRAY X1?
	The culprit in shifti
	Why such a large impact?
	New loop in shift
	Did it work?
	Results: Flops/sec count basedon CPU time
	Results: Inverse of wall clock time
	Scaling
	The numbers…
	Results: Average vector lengthand vector operation ratio
	Results: Flops/sec for higherparticle resolution
	Memory used by the vectorizedversion of GTC (per processor)
	Conclusions

